Skip to main content
Log in

Supporting IrOx nanosheets on hollow TiO2 for highly efficient acidic water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The efficiency of proton exchange membrane water electrolysis (PEM-WE) for hydrogen production is heavily dependent on the noble metal iridium-based catalysts. However, the scarcity of iridium limits the large-scale application of PEM-WE. To address this issue, it is promising to select an appropriate support because it not only enhances the utilization efficiency of noble metals but also improves mass transport under high current. Herein, we supported amorphous IrOx nanosheets onto the hollow TiO2 sphere (denoted as IrOx), which demonstrated excellent performance in acidic electrolytic water splitting. Specifically, the annealed IrOx catalyst at 150 °C in air exhibited a mass activity of 1347.5 A·gIr−1, which is much higher than that of commercial IrO2 of 12.33 A·gIr−1 at the overpotential of 300 mV for oxygen evolution reaction (OER). Meanwhile, the annealed IrOx exhibited good stability for 600 h operating at 10 mA·cm−2. Moreover, when using IrOx and annealed IrOx catalysts for water splitting, a cell voltage as low as 1.485 V can be achieved at 10 mA·cm−2. The cell can continuously operate for 200 h with negligible degradation of performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, W. X.; Song, X. C.; Liao, F.; Huang, H.; Shao, Q.; Feng, K.; Zhou, Y. J.; Ma, M. J.; Wu, J.; Yang, H. et al. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide. Nat. Commun. 2023, 14, 5365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, S. H.; Tan, H.; Huang, Y. C.; Zhang, Q. B.; Lin, H. P.; Li, L.; Hu, Z. W.; Huang, W. H.; Pao, C. W.; Lee, J. F. et al. Structurally-distorted RuIr-based nanoframes for long-duration oxygen evolution catalysis. Adv. Mater. 2023, 35, 2305659.

    Article  CAS  Google Scholar 

  3. Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

    Article  Google Scholar 

  4. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  5. Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

    Article  CAS  Google Scholar 

  6. Zhang, D. F.; Li, M. N.; Yong, X.; Song, H. Q.; Waterhouse, G. I. N.; Yi, Y. F.; Xue, B. J.; Zhang, D. L.; Liu, B. Z.; Lu, S. Y. Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nat. Commun. 2023, 14, 2517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi, Z. P.; Li, J.; Wang, Y. B.; Liu, S. W.; Zhu, J. B.; Yang, J. H.; Wang, X.; Ni, J.; Jiang, Z.; Zhang, L. J. et al. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers. Nat. Commun. 2023, 14, 843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tian, C.; Liu, R.; Zhang, Y.; Yang, W. X.; Wang, B. Ru-doped functional porous materials for electrocatalytic water splitting. Nano Res. 2024, 17, 982–1002.

    Article  CAS  Google Scholar 

  9. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

    Article  CAS  Google Scholar 

  10. Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi, Y.; Lu, Z. X.; Guo, L. L.; Wang, Z. D.; Guo, C. Q.; Tan, H. Y.; Yan, C. F. Fabrication of IrO2 decorated vertical aligned self-doped TiO2 nanotube arrays for oxygen evolution in water electrolysis. Int. J. Hydrogen Energy 2018, 43, 9133–9143.

    Article  CAS  Google Scholar 

  12. Genova-Koleva, R. V.; Alcaide, F.; Álvarez, G.; Cabot, P. L.; Grande, H. J.; Martínez-Huerta, M. V.; Miguel, O. Supporting IrO2 and IrRuO nanoparticles on TiO2 and Nb-doped TiO2 nanotubes as electrocatalysts for the oxygen evolution reaction. J. Energy Chem. 2019, 34, 227–239.

    Article  Google Scholar 

  13. Wang, Y. N.; Zhang, M. C.; Kang, Z. Y.; Shi, L.; Shen, Y. C.; Tian, B. Y.; Zou, Y. C.; Chen, H.; Zou, X. X. Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer. Nat. Commun. 2023, 14, 5119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi, Z. P.; Li, J.; Jiang, J. D.; Wang, Y. B.; Wang, X.; Li, Y.; Yang, L. T.; Chu, Y. Y.; Bai, J. S.; Yang, J. H. et al. Enhanced acidic water oxidation by dynamic migration of oxygen species at the Ir/Nb2O5−x catalyst/support interfaces. Angew. Chem., Int. Ed. 2022, 61, e202212341.

    Article  CAS  Google Scholar 

  15. Wang, Y. B.; Ma, R. P.; Shi, Z. P.; Wu, H. X.; Hou, S.; Wang, Y.; Liu, C. P.; Ge, J. J.; Xing, W. Inverse doping IrOx/Ti with weakened Ir–O interaction toward stable and efficient acidic oxygen evolution. Chem 2023, 9, 2931–2942.

    Article  CAS  Google Scholar 

  16. Lv, H.; Wang, S.; Li, J. K.; Shao, C. F.; Zhou, W.; Shen, X. J.; Xue, M. Z.; Zhang, C. M. Self-assembled RuO2@IrOx core–shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer. Appl. Surf. Sci. 2020, 514, 145943.

    Article  CAS  Google Scholar 

  17. Dong, S.; Zhang, C. Y.; Yue, Z. Y.; Zhang, F. R.; Zhao, H.; Cheng, Q. Q.; Wang, G. L.; Xu, J. F.; Chen, C.; Zou, Z. Q. et al. Overall design of anode with gradient ordered structure with low iridium loading for proton exchange membrane water electrolysis. Nano Lett. 2022, 22, 9434–9440.

    Article  CAS  PubMed  Google Scholar 

  18. Lin, F. X.; Lv, F.; Zhang, Q. H.; Luo, H.; Wang, K.; Zhou, J. H.; Zhang, W. Y.; Zhang, W. S.; Wang, D. W.; Gu, L. et al. Local coordination regulation through tuning atomic-scale cavities of pd metallene toward efficient oxygen reduction electrocatalysis. Adv. Mater. 2022, 34, 2202084.

    Article  CAS  Google Scholar 

  19. Zhao, Y. F.; Lu, X. F.; Wu, Z. P.; Pei, Z. H.; Luan, D. Y.; Lou, X. W. Supporting trimetallic metal-organic frameworks on S/N-doped carbon macroporous fibers for highly efficient electrocatalytic oxygen evolution. Adv. Mater. 2023, 35, 2207888.

    Article  CAS  Google Scholar 

  20. Joo, J. B.; Lee, I.; Dahl, M.; Moon, G. D.; Zaera, F.; Yin, Y. D. Controllable synthesis of mesoporous TiO2 hollow shells: Toward an efficient photocatalyst. Adv. Funct. Mater. 2013, 23, 4246–4254.

    Article  CAS  Google Scholar 

  21. Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; De Luna, P. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490

    Article  CAS  PubMed  Google Scholar 

  23. Li, R. L.; Rao, D. W.; Zhou, J. B.; Wu, G.; Wang, G. Z.; Zhu, Z. X.; Han, X.; Sun, R. B.; Li, H.; Wang, C. et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nat. Commun. 2021, 12, 3102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.

    Article  CAS  PubMed  Google Scholar 

  25. Sun, W.; Ma, C. L.; Tian, X. L.; Liao, J. J.; Yang, J.; Ge, C. J.; Huang, W. W. An amorphous lanthanum-iridium solid solution with an open structure for efficient water splitting. J. Mater. Chem. A 2020, 8, 12518–12525.

    Article  CAS  Google Scholar 

  26. Li, N.; Cai, L.; Wang, C.; Lin, Y.; Huang, J. Z.; Sheng, H. Y.; Pan, H. B.; Zhang, W.; Ji, Q. Q.; Duan, H. L. et al. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity. J. Am. Chem. Soc. 2021, 143, 18001–18009.

    Article  CAS  PubMed  Google Scholar 

  27. Fan, Z. L.; Ji, Y. J.; Shao, Q.; Geng, S. Z.; Zhu, W. X.; Liu, Y.; Liao, F.; Hu, Z. W.; Chang, Y. C.; Pao, C. W. et al. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide. Joule 2021, 5, 3221–3234.

    Article  CAS  Google Scholar 

  28. Dang, Q.; Lin, H. P.; Fan, Z. L.; Ma, L.; Shao, Q.; Ji, Y. J.; Zheng, F. F.; Geng, S. Z.; Yang, S. Z.; Kong, N. N. et al. Iridium metallene oxide for acidic oxygen evolution catalysis. Nat. Commun. 2021, 12, 6007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kwon, T.; Hwang, H.; Sa, Y. J.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Cobalt assisted synthesis of ircu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1604688.

    Article  Google Scholar 

  30. Lv, F.; Feng, J. R.; Wang, K.; Dou, Z. P.; Zhang, W. Y.; Zhou, J. H.; Yang, C.; Luo, M. C.; Yang, Y.; Li, Y. J. et al. Iridium-tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts. ACS Cent. Sci. 2018, 4, 1244–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, X.; Qin, Z.; Qian, J. J.; Chen, L. Y.; Shen, K. IrCo nanoparticles encapsulated with carbon nanotubes for efficient and stable acidic water splitting. ACS Catal. 2023, 13, 10672–10682.

    Article  CAS  Google Scholar 

  32. Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched RuxFe3−xO4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

    Article  CAS  PubMed  Google Scholar 

  33. Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

    Article  CAS  Google Scholar 

  34. Zhu, L. L.; Lin, H. P.; Li, Y. Y.; Liao, F.; Lifshitz, Y.; Sheng, M. Q.; Lee, S. T.; Shao, M. W. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials. Nat. Commun. 2016, 7, 12272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

    Article  CAS  PubMed  Google Scholar 

  36. Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

    Article  PubMed  Google Scholar 

  37. Cheng, Y. F.; Lu, S. K.; Liao, F.; Liu, L. B.; Li, Y. Q.; Shao, M. W. Rh-MoS2 nanocomposite catalysts with Pt-like activity for hydrogen evolution reaction. Adv. Funct. Mater. 2017, 27, 1700359.

    Article  Google Scholar 

  38. Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-watersplitting catalysis. Adv. Mater. 2017, 29, 1703798.

    Article  Google Scholar 

  39. Pu, Z. H.; Amiinu, I. S.; Kou, Z. K.; Li, W. Q.; Mu, S. C. RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2017, 56, 11559–11564.

    Article  CAS  Google Scholar 

  40. Jiang, P.; Yang, Y.; Shi, R. H.; Xia, G. L.; Chen, J. T.; Su, J. W.; Chen, Q. W. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 5475–5485.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Key R&D Program of China (Nos. 2018YFA0702001 and 2021YFA1500400), the National Natural Science Foundation of China (Nos. 22371268 and 22175163), Fundamental Research Funds for the Central Universities (No. WK2060000016), Anhui Development and Reform Commission (No. AHZDCYCX-2SDT2023-07), and Youth Innovation Promotion Association of the Chinese Academy of Science (No. 2018494) supported this work. We acknowledge USTC Tang Scholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongming Wang or Xun Hong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Li, R., Hu, Y. et al. Supporting IrOx nanosheets on hollow TiO2 for highly efficient acidic water splitting. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6681-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6681-7

Keywords

Navigation