Skip to main content
Log in

Solid polymer electrolyte-based high areal capacity all-solid-state batteries enabled with ceramic interlayers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes (SPEs) based all-solid-state batteries (ASSBs) have attracted extensive attention as a promising candidate for next-generation energy storage systems. Typical ASSBs require high fabrication pressure to achieve high areal capacity, under which, however, SPEs struggle and risk damage or failure due to their low mechanical strength. There is also a lack of study on complex stress and strain SPEs experience during ASSB cell assembly processes. Here, ceramic solid electrolytes are selected as interlayers to address the stress–strain conditions during assembling. As a result, high areal capacity ASSBs with a LiCoO2 loading of 12 mg·cm−2 were assembled with SPE-based composite electrolytes. Around 200 cycles were carried out for these cells at a current density of 1 mA·cm−2 under room temperature. The capacity decay of the battery at 200 cycles is observed to be as low as 0.06% per cycle. This work identifies a critical issue for application of SPEs in ASSBs and provides a potential strategy for the design of SPE-based ASSBs with high specific energy and long cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

    Article  CAS  Google Scholar 

  2. Janek, J.; Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240.

    Article  Google Scholar 

  3. Yoon, K.; Lee, S.; Oh, K.; Kang, K. Challenges and strategies towards practically feasible solid-state lithium metal batteries. Adv. Mater. 2022, 34, 2104666.

    Article  CAS  Google Scholar 

  4. Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.

    Article  CAS  PubMed  Google Scholar 

  5. Jia, H. H.; Hu, C. J.; Zhang, Y. X.; Chen, L. W. A review on solidstate Li-S battery: From the conversion mechanism of sulfur to engineering design. J. Electrochem. 2023, 29, 2217008.

    Google Scholar 

  6. Reinoso, D. M.; Frechero, M. A. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Mater. 2022, 52, 430–464.

    Article  Google Scholar 

  7. Fan, L. Z.; He, H. C.; Nan, C. W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019.

    Article  CAS  Google Scholar 

  8. Han, L. F.; Wang, L.; Chen, Z. H.; Kan, Y. C.; Hu, Y.; Zhang, H.; He, X. M. Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: A review. Adv. Funct. Mater. 2023, 33, 2300892.

    Article  CAS  Google Scholar 

  9. Ding, L. M.; Dong, S. J.; Wang, E. K. Advances in solid polymer electrolytes. J. Electrochem. 1997, 3, 349–361.

    Article  CAS  Google Scholar 

  10. Chen, D. Q.; Hu, C. J.; Chen, Q.; Xue, G. Y.; Tang, L. F.; Dong, Q. Y.; Chen, B. W.; Zhang, F. R.; Gao, M. W.; Xu, J. J. et al. High ceramic content composite solid-state electrolyte films prepared via a scalable solvent-free process. Nano Res. 2023, 16, 3847–3854.

    Article  CAS  Google Scholar 

  11. Jin, F.; Li, J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. High performance solid-state battery with integrated cathode and electrolyte. Acta Phys. Chim. Sin. 2019, 35, 1399–1403.

    Article  CAS  Google Scholar 

  12. An, Y.; Han, X.; Liu, Y. Y.; Azhar, A.; Na, J.; Nanjundan, A. K.; Wang, S. P.; Yu, J. X.; Yamauchi, Y. Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 2022, 18, 2103617.

    Article  CAS  Google Scholar 

  13. Fu, X. L.; Shang, C. Q.; Yang, M. Y.; Akinoglu, E. M.; Wang, X.; Zhou, G. F. An ion-conductive separator for high safety Li metal batteries. J. Power Sources 2020, 475, 228687.

    Article  CAS  Google Scholar 

  14. Fraile-Insagurbe, D.; Boaretto, N.; Aldalur, I.; Raposo, I.; Bonilla, F. J.; Armand, M.; Martínez-Ibañez, M. Novel single-ion conducting polymer electrolytes with high toughness and high resistance against lithium dendrites. Nano Res. 2023, 16, 8457–8468.

    Article  CAS  Google Scholar 

  15. Zhang, F. Y.; Guo, Y. N.; Zhang, L. Q.; Jia, P.; Liu, X.; Qiu, P.; Zhang, H. B.; Huang, J. Y. A review of the effect of external pressure on all-solid-state batteries. eTransportation 2023, 15, 100220.

    Article  Google Scholar 

  16. Flores, A.; Ania, F.; Baltá-Calleja, F. J. From the glassy state to ordered polymer structures: A microhardness study. Polymer 2009, 50, 729–746.

    Article  CAS  Google Scholar 

  17. Casettari, L.; Bonacucina, G.; Cespi, M.; Perinelli, D. R.; Micheli, M.; Cacciatore, I.; Di Stefano, A.; Palmieri, G. F. Effect of manufacturing temperature and molecular weights on compression, mechanical and dissolution properties of PEO matrix tablets. J. Drug Deliv. Sci. Technol. 2016, 32, 236–240.

    Article  CAS  Google Scholar 

  18. Vondran, J. L.; Sun, W.; Schauer, C. L. Crosslinked, electrospun chitosan-poly(ethylene oxide) nanofiber mats. J. Appl. Polym. Sci. 2008, 109, 968–975.

    Article  CAS  Google Scholar 

  19. Huo, H. Y.; Jiang, M.; Mogwitz, B.; Sann, J.; Yusim, Y.; Zuo, T. T.; Moryson, Y.; Minnmann, P.; Richter, F. H.; Veer Singh, C. et al. Interface design enabling stable polymer/thiophosphate electrolyte separators for dendrite-free lithium metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202218044.

    Article  CAS  Google Scholar 

  20. Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; Boston, R.; Corr, S. A.; De Volder, M. F. L.; Inkson, B. J.; Fleck, N. A. Mechanical properties of cathode materials for lithium-ion batteries. Joule 2022, 6, 984–1007.

    Article  CAS  Google Scholar 

  21. Xu, H.; Li, W. Y.; Huang, L.; Zeng, D. L.; Zhang, Y. F.; Sun, Y. B.; Cheng, H. S. Zwitterion-doped self-supporting single-ion conducting polymer electrolyte membrane for dendrite-free lithium metal secondary batteries. Sci. China Mater. 2023, 66, 3799–3809.

    Article  CAS  Google Scholar 

  22. Athanasiou, C. E.; Jin, M. Y.; Ramirez, C.; Padture, N. P.; Sheldon, B. W. High-toughness inorganic solid electrolytes via the use of reduced graphene oxide. Matter 2020, 3, 212–229.

    Article  Google Scholar 

  23. Kim, Y.; Jo, H.; Allen, J. L.; Choe, H.; Wolfenstine, J.; Sakamoto, J. The effect of relative density on the mechanical properties of hot-pressed cubic Li7La3Zr2O12. J. Am. Ceram. Soc. 2016, 99, 1367–1374.

    Article  CAS  Google Scholar 

  24. Wang, A. N.; Nonemacher, J. F.; Yan, G.; Finsterbusch, M.; Malzbender, J.; Krüger, M. Mechanical properties of the solid electrolyte Al-substituted Li7La3Zr2O12 (LLZO) by utilizing micro-pillar indentation splitting test. J. Eur. Ceram Soc. 2018, 38, 3201–3209.

    Article  CAS  Google Scholar 

  25. LePage, W. S.; Chen, Y. X.; Kazyak, E.; Chen, K. H.; Sanchez, A. J.; Poli, A.; Arruda, E. M.; Thouless, M. D.; Dasgupta, N. P. Lithium mechanics: Roles of strain rate and temperature and implications for lithium metal batteries. J. Electrochem. Soc. 2019, 166, A89–A97.

    Article  CAS  Google Scholar 

  26. Xue, G. Y.; Li, J.; Chen, J. C.; Chen, D. Q.; Hu, C. J.; Tang, L. F.; Chen, B. W.; Yi, R. W.; Shen, Y. B.; Chen, L. W. A single-ion polymer superionic conductor. Acta Phys. Chim. Sin. 2023, 99, 2205012.

    Google Scholar 

  27. Masias, A.; Felten, N.; Garcia-Mendez, R.; Wolfenstine, J.; Sakamoto, J. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 2019, 54, 2585–2600.

    Article  CAS  Google Scholar 

  28. de Vasconcelos, L. S.; Xu, R.; Xu, Z. R.; Zhang, J.; Sharma, N.; Shah, S. R.; Han, J. X.; He, X. M.; Wu, X. Y.; Sun, H. et al. Chemomechanics of rechargeable batteries: Status, theories, and perspectives. Chem Rev. 2022, 122, 13043–13107.

    Article  CAS  PubMed  Google Scholar 

  29. Hu, C. J.; Shen, Y. B.; Shen, M.; Liu, X.; Chen, H. W.; Liu, C. H.; Kang, T.; Jin, F.; Li, L.; Li, J. et al. Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 2020, 142, 18035–18041.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, C. H.; Liang, J. W.; Jiang, M.; Li, X. N.; Mukherjee, S.; Adair, K.; Zheng, M.; Zhao, Y.; Zhao, F. P.; Zhang, S. M. et al. Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy 2020, 76, 105015.

    Article  CAS  Google Scholar 

  31. He, L. H.; Swain, M. V. Microindentation. Compr. Biomater. II 2017, 3, 144–168.

    Google Scholar 

  32. Nowicki, M.; Richter, A.; Wolf, B.; Kaczmarek, H. Nanoscale mechanical properties of polymers irradiated by UV. Polymer 2003, 44, 6599–6606.

    Article  CAS  Google Scholar 

  33. Li, X. N.; Liang, J. W.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C. H.; Banis, M. N.; Sham, T. K.; Zhang, L.; Zhao, S. Q. et al. Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem., Int. Ed. 2019, 58, 16427–16432.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Key R&D Program of China (No. 2021YFB3800300), Science and Technology Commission of Shanghai Municipality (No. 23DZ1200800), and China Postdoctoral Science Foundation (Nos. BX20220199 and 2023M732208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Chen, D., Huang, Y. et al. Solid polymer electrolyte-based high areal capacity all-solid-state batteries enabled with ceramic interlayers. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6667-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6667-5

Keywords

Navigation