Skip to main content
Log in

The configuration of Auδ+-ZrO2δ species induced activation enhances electrocatalytic CO2 to formate conversion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical CO2 conversion into value-added chemicals is a promising technology to solve the greenhouse effect and recycle chemical energy. However, the electrochemical CO2 reduction reaction (e-CO2RR) is seriously compromised by weak CO2 adsorption and a rough CO2 activation process based on the chemical inertness of the CO2 molecule and the formed fragile metal–C/O bond. In this paper, we designed and fabricated Au particles embedded in ZrO2. The configuration of Au particles being of positive charge and ZrO2 with negative charge is induced and generated by metal–support interactions (MSIs). As a result, Au/ZrO2@C presents a big difference in the CO2 conversion compared with the known work, affording a formate yield of 112.5 µmol·cm−2·h−1 at −1.1 V vs. reversible hydrogen electrode (RHE), and a max formate Faradaic efficiency of up to 94.1% at −0.9 V vs. RHE. This superior performance was attributed to the activated Au–ZrO2 interface to form the Auδ+ species. Both in-situ Fourier transform infrared (FTIR) spectroscopy and theoretical calculations show that the MSIs configuration can be inclined to the *OCO intermediate generation on Auδ+ species activating CO2 molecules and then accelerate the formation of the *OCHO intermediate in e-CO2RR, thereby favoring the CO2 conversion to formate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, J. P.; Yu, H. P.; Guan, X. D.; Wang, G. Y.; Guo, R. X. Accelerated dryland expansion under climate change. Nat. Climate Chage 2016, 6, 166–171.

    Article  Google Scholar 

  2. Kar, S.; Sen, R.; Goeppert, A.; Prakash, G. K. S. Integrative CO2 capture and hydrogenation to methanol with reusable catalyst and amine: Toward a carbon neutral methanol economy. J. Am. Chem. Soc. 2018, 140, 1580–1583.

    Article  CAS  PubMed  Google Scholar 

  3. Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804–9838.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bediako, B. B. A.; Qian, Q. L.; Han, B. X. Synthesis of C2+ chemicals from CO2 and H2 via C–C bond formation. Acc. Chem. Res. 2021, 54, 2467–2476.

    Article  Google Scholar 

  5. Bierbaumer, S.; Nattermann, M.; Schulz, L.; Zschoche, R.; Erb, T. J.; Winkler, C. K.; Tinzl, M.; Glueck, S. M. Enzymatic conversion of CO2: From natural to artificial utilization. Chem. Rev. 2023, 123, 5702–5754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973

    Article  CAS  PubMed  Google Scholar 

  7. Kumagai, H.; Tamaki, Y.; Ishitani, O. Photocatalytic systems for CO2 reduction: Metal-complex photocatalysts and their hybrids with photofunctional solid materials. Acc. Chem. Res. 2022, 55, 978–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Coδ+ interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

    Article  CAS  Google Scholar 

  9. Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Solar-versus thermal-driven catalysis for energy conversion. Joule 2019, 3, 920–937.

    Article  CAS  Google Scholar 

  10. Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

    Article  CAS  PubMed  Google Scholar 

  11. Ge, L.; Rabiee, H.; Li, M. R.; Subramanian, S.; Zheng, Y.; Lee, J. H.; Burdyny, T.; Wang, H. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 2022, 8, 663–692.

    Article  CAS  Google Scholar 

  12. Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.

    Article  CAS  PubMed  Google Scholar 

  13. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

    Article  CAS  Google Scholar 

  14. Huang, H. M.; Song, H.; Kou, J. H.; Lu, C. H.; Ye, J. H. Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction. J. Energy Chem. 2022, 67, 309–341.

    Article  CAS  Google Scholar 

  15. Zhang, Z. Q.; Xu, J. Y.; Zhang, Y.; Zhao, L. P.; Li, M.; Zhong, G. Q.; Zhao, D.; Li, M. J.; Hu, X. D.; Zhu, W. J. et al. Porous metal oxides in the role of electrochemical CO2 reduction reaction. J. Energy Chem. 2024, 88, 373–398.

    Article  CAS  Google Scholar 

  16. Saha, P.; Amanullah, S.; Dey, A. Selectivity in electrochemical CO2 reduction. Acc. Chem. Res. 2022, 55, 134–144.

    Article  CAS  PubMed  Google Scholar 

  17. Melchionna, M.; Fornasiero, P.; Prato, M.; Bonchio, M. Electrocatalytic CO2 reduction: Role of the cross-talk at nano-carbon interfaces. Energy Environ. Sci. 2021, 14, 5816–5833.

    Article  CAS  Google Scholar 

  18. Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bachiller-Baeza, B.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A. Interaction of carbon dioxide with the surface of zirconia polymorphs. Langmuir 1998, 14, 3556–3564.

    Article  CAS  Google Scholar 

  20. Li, X. T.; Liu, Q.; Wang, J. H.; Meng, D. C.; Shu, Y. J.; Lv, X. Z.; Zhao, B.; Yang, H.; Cheng, T.; Gao, Q. S. et al. Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes. Chem 2022, 8, 2148–2162.

    Article  CAS  Google Scholar 

  21. Guo, P. P.; He, Z. H.; Yang, S. Y.; Wang, W. T.; Wang, K.; Li, C. C.; Wei, Y. Y.; Liu, Z. T.; Han, B. X. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. Green Chem. 2022, 24, 1527–1533.

    Article  CAS  Google Scholar 

  22. Miao, Z. P.; Hu, P.; Nie, C. Y.; Xie, H.; Fu, W. L.; Li, Q. ZrO2 nanoparticles anchored on nitrogen-doped carbon nanosheets as efficient catalyst for electrochemical CO2 reduction. J. Energy Chem. 2019, 38, 114–118.

    Article  Google Scholar 

  23. Wang, X. Y.; Feng, S. H.; Lu, W. C.; Zhao, Y. J.; Zheng, S. X.; Zheng, W. Z.; Sang, X. H.; Zheng, L. R.; Xie, Y.; Li, Z. J. et al. A new strategy for accelerating dynamic proton transfer of electrochemical CO2 reduction at high current densities. Adv. Func. Mater. 2021, 31, 2104243.

    Article  CAS  Google Scholar 

  24. Jiang, Y. Q.; Cheng, G.; Li, Y. H.; He, Z. X.; Zhu, J.; Meng, W.; Dai, L.; Wang, L. Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework. Chem. Eng. J. 2021, 415, 129014.

    Article  CAS  Google Scholar 

  25. Rogers, C.; Perkins, W. S.; Veber, G.; Williams, T. E.; Cloke, R. R.; Fischer, F. R. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J. Am. Chem. Soc. 2017, 139, 4052–4061.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, S. L.; Abdel-Mageed, A. M.; Mochizuki, C.; Ishida, T.; Murayama, T.; Rabeah, J.; Parlinska-Wojtan, M.; Brückner, A.; Behm, R. J. Controlling the O-vacancy formation and performance of Au/ZnO catalysts in CO2 reduction to methanol by the ZnO particle size. ACS Catal. 2021, 11, 9022–9033.

    Article  CAS  Google Scholar 

  27. Duan, Y. X.; Zhou, Y. T.; Yu, Z.; Liu, D. X.; Wen, Z.; Yan, J. M.; Jiang, Q. Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew. Chem., Int. Ed. 2021, 60, 8798–8802.

    Article  CAS  Google Scholar 

  28. Fu, H. Q.; Liu, J. X.; Bedford, N. M.; Wang, Y.; Sun, J. W.; Zou, Y.; Dong, M. Y.; Wright, J.; Diao, H.; Liu, P. R. et al. Synergistic Cr2O3@Ag heterostructure enhanced electrocatalytic CO2 reduction to CO. Adv. Mater. 2022, 34, 2202854.

    Article  CAS  Google Scholar 

  29. Chu, S.; Ou, P. F.; Ghamari, P.; Vanka, S.; Zhou, B. W.; Shih, I.; Song, J.; Mi, Z. T. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J. Am. Chem. Soc. 2018, 140, 7869–7877.

    Article  CAS  PubMed  Google Scholar 

  30. Otor, H. O.; Steiner, J. B.; García-Sancho, C.; Alba-Rubio, A. C. Encapsulation methods for control of catalyst deactivation: A review. ACS Catal. 2020, 10, 7630–7656.

    Article  CAS  Google Scholar 

  31. Wang, Q. R.; Yang, X. F.; Zang, H.; Liu, C. J.; Wang, J. H.; Yu, N.; Kuai, L.; Qin, Q.; Geng, B. Y. InBi bimetallic sites for efficient electrochemical reduction of CO2 to HCOOH. Small 2023, 19, 2303172.

    Article  CAS  Google Scholar 

  32. Wei, B.; Xiong, Y. S.; Zhang, Z. Y.; Hao, J. H.; Li, L. H.; Shi, W. D. Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet. Appl. Catal. B: Environ. 2021, 283, 119646.

    Article  CAS  Google Scholar 

  33. Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic co2 reduction to HCOOH. Angew. Chem., Int. Ed. 2021, 60, 12554–12559.

    Article  CAS  Google Scholar 

  34. Xing, Y. L.; Kong, X. D.; Guo, X.; Liu, Y.; Li, Q. Y.; Zhang, Y. Z.; Sheng, Y. L.; Yang, X. P.; Geng, Z. G.; Zeng, J. Bi@Sn core-shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. 2020, 7, 1902989.

    Article  CAS  Google Scholar 

  35. Zhang, Y.; Chen, H. X.; Duan, L.; Fan, J. B.; Ni, L.; Ji, V. A comparison study of the structural and mechanical properties of cubic, tetragonal, monoclinic, and three orthorhombic phases of ZrO2. J. Alloys Compd. 2018, 749, 283–292.

    Article  CAS  Google Scholar 

  36. Tang, H. L.; Su, Y.; Zhang, B. S.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y. G.; Huang, J. H.; Haruta, M. et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yuan, L. P.; Jiang, W. J.; Liu, X. L.; He, Y. H.; He, C.; Tang, T.; Zhang, J. N.; Hu, J. S. Molecularly engineered strong metal oxide–support interaction enables highly efficient and stable CO2 electroreduction. ACS Catal. 2020, 10, 13227–13235.

    Article  CAS  Google Scholar 

  38. Lei, F. C.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Liu, K. T.; Liang, L.; Yao, T.; Pan, B. C.; Wei, S. Q.; Xie, Y. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734–1737.

    Article  CAS  PubMed  Google Scholar 

  40. Xie, M. C.; Shen, Y.; Ma, W. C.; Wei, D. Y.; Zhang, B.; Wang, Z. H.; Wang, Y. H.; Zhang, Q. H.; Xie, S. J.; Wang, C. et al. Fast screening for copper-based bimetallic electrocatalysts: Efficient electrocatalytic reduction of CO2 to C2+ products on magnesium-modified copper. Angew. Chem., Int. Ed. 2022, 61, e202213423.

    Article  CAS  Google Scholar 

  41. Zhang, Y.; Gao, X. P.; Weaver, M. J. Nature of surface bonding on voltammetrically oxidized noble metals in aqueous media as probed by real-time surface-enhanced Raman spectroscopy. J. Phys. Chem. 1993, 97, 8656–8663.

    Article  CAS  Google Scholar 

  42. Xu, Y. J.; Wang, F.; Lei, S. L.; Wei, Y.; Zhao, D.; Gao, Y. H.; Ma, X.; Li, S. J.; Chang, S. Q.; Wang, M. Q. et al. In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction. Chem. Eng. J. 2023, 452, 139392.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFB3500100), the National Natural Science Foundation of China (No. 21805122), and Industrial Support Plan Project of Colleges and Universities in Gansu Province (No. 2021CYZC19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjian Jia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Zhang, Y., Lin, M. et al. The configuration of Auδ+-ZrO2δ species induced activation enhances electrocatalytic CO2 to formate conversion. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6657-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6657-7

Keywords

Navigation