Skip to main content
Log in

A review of ultrafast laser micro/nano fabrication: Material processing, surface/interface controlling, and devices fabrication

  • Flagship Review
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology, biotechnology, energy science, and photonics due to its controllable processing precision, diverse processing capabilities, and broad material adaptability. The processing abilities and applications of the ultrafast laser still need more exploration. In the field of material processing, controlling the atomic scale structure in nanomaterials is challenging. Complex effects exist in ultrafast laser surface/interface processing, making it difficult to modulate the nanostructure and properties of the surface/interface as required. In the ultrafast laser fabrication of micro functional devices, the processing ability needs to be improved. Here, we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing, surface/interface controlling, and micro functional devices fabrication. Several useful ultrafast laser processing methods and applications in these areas are introduced. With various processing effects and abilities, the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast laser processing of materials: From science to industry. Light Sci. Appl. 2016, 5, e16133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chichkov, B. N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115.

    Article  Google Scholar 

  3. Rethfeld, B.; Sokolowski-Tinten, K.; von der Linde, D.; Anisimov, S. I. Timescales in the response of materials to femtosecond laser excitation. Appl. Phys. A 2004, 79, 767–769.

    Article  CAS  Google Scholar 

  4. Jiang, L.; Wang, A. D.; Li, B.; Cui, T. H.; Lu, Y. F. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: Modeling, method, measurement and application. Light Sci. Appl. 2018, 7, 17134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rethfeld, B.; Ivanov, D. S.; Garcia, M. E.; Anisimov, S. I. Modelling ultrafast laser ablation. J. Phys. D: Appl. Phys. 2017, 50, 193001.

    Article  Google Scholar 

  6. Qiao, M.; Yan, J. F.; Qu, L. T.; Zhao, B. Q.; Yin, J. G.; Cui, T. H.; Jiang, L. Femtosecond laser induced phase transformation of TiO2 with exposed reactive facets for improved photoelectrochemistry performance. ACS Appl. Mater. Interfaces 2020, 12, 41250–41258.

    Article  CAS  PubMed  Google Scholar 

  7. Qiao, M.; Wang, H. M.; Lu, H. J.; Li, S.; Yan, J. F.; Qu, L. T.; Zhang, Y. Y.; Jiang, L.; Lu, Y. F. Micro/nano processing of natural silk fibers with near-field enhanced ultrafast laser. Sci. China Mater. 2020, 63, 1300–1309.

    Article  CAS  Google Scholar 

  8. Qiao, M.; Yan, J. F.; Gao, B. Ablation of TiO2 surface with a double-pulse femtosecond laser. Opt. Commun. 2019, 441, 49–54.

    Article  CAS  Google Scholar 

  9. Liu, S. F.; Xu, W.; Niu, Y. M.; Zhang, B. S.; Zheng, L. R.; Liu, W.; Li, L.; Wang, J. H. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 2019, 10, 5790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Han, R. C.; Zhao, M.; Wang, Z. W.; Liu, H. L.; Zhu, S. C.; Huang, L.; Wang, Y.; Wang, L. J.; Hong, Y. K.; Sha, Y. L. et al. Superefficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano 2020, 14, 9532–9544.

    Article  CAS  PubMed  Google Scholar 

  11. Papadopoulos, A.; Skoulas, E.; Mimidis, A.; Perrakis, G.; Kenanakis, G.; Tsibidis, G. D.; Stratakis, E. Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring. Adv. Mater. 2019, 31, 1901123.

    Article  Google Scholar 

  12. Li, X. Y.; Zhou, X.; Lu, K. Rapid heating induced ultrahigh stability of nanograined copper. Sci. Adv. 2020, 6, eaaz8003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan, J. F.; Lindo, A.; Schwaiger, R.; Hodge, A. M. Sliding wear behavior of fully nanotwinned Cu alloys. Friction 2019, 7, 260–267.

    Article  CAS  Google Scholar 

  14. Li, Z. Z.; Wang, L.; Fan, H.; Yu, Y. H.; Chen, Q. D.; Juodkazis, S.; Sun, H. B. O- FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl. 2020, 9, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tan, D. Z.; Zhang, B.; Qiu, J. R. Ultrafast laser direct writing in glass: Thermal accumulation engineering and applications. Laser Photon. Rev. 2021, 15, 2000455.

    Article  CAS  Google Scholar 

  16. Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871.

    Article  Google Scholar 

  17. González-Rubio, G.; Díaz-Núñez, P.; Rivera, A.; Prada, A.; Tardajos, G.; González-Izquierdo, J.; Bañares, L.; Llombart, P.; Macdowell, L. G.; Alcolea Palafox, M. et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 2017, 358, 640–644.

    Article  PubMed  Google Scholar 

  18. Chen, Y. S.; Zhao, Y.; Yoon, S. J.; Gambhir, S. S.; Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2019, 14, 465–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan, J. F.; Zou, G. S.; Wu, A. P.; Ren, J. L.; Yan, J. C.; Hu, A. M.; Zhou, Y. Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scr. Mater. 2012, 66, 582–585.

    Article  CAS  Google Scholar 

  20. Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

    Article  CAS  PubMed  Google Scholar 

  21. Fang, L. L.; Liu, D. L.; Wang, Y. L.; Li, Y. J.; Song, L.; Gong, M.; Li, Y.; Deng, Z. X. Nanosecond-laser- based charge transfer plasmon engineering of solution-assembled nanodimers. Nano Lett. 2018, 18, 7014–7020.

    Article  CAS  PubMed  Google Scholar 

  22. Hashimoto, S.; Werner, D.; Uwada, T. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 28–54.

    Article  CAS  Google Scholar 

  23. Yan, J. F.; Zhu, D. Z.; Xie, J. W.; Shao, Y.; Xiao, W. Light tailoring of internal atomic structure of gold nanorods. Small 2020, 16, 2001101.

    Article  CAS  Google Scholar 

  24. Takami, A.; Kurita, H.; Koda, S. Laser- induced size reduction of noble metal particles. J. Phys. Chem. B 1999, 103, 1226–1232.

    Article  CAS  Google Scholar 

  25. Liu, S.; Pan, X. T.; Liu, H. Y. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. 2020, 132, 5943–5953.

    Article  Google Scholar 

  26. Mei, L. Q.; Zhu, S.; Yin, W. Y.; Chen, C. Y.; Nie, G. J.; Gu, Z. J.; Zhao, Y. L. Two- dimensional nanomaterials beyond graphene for antibacterial applications: Current progress and future perspectives. Theranostics 2020, 10, 757–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, G. D.; Baker-Murray, A. A.; Blau, W. J. Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photon. Rev. 2019, 13, 1800282.

    Article  Google Scholar 

  28. Jana, M.; Xu, R.; Cheng, X. B.; Yeon, J. S.; Park, J. M.; Huang, J. Q.; Zhang, Q.; Park, H. S. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1049–1075.

    Article  CAS  Google Scholar 

  29. Jiang, T.; Yin, K.; Wang, C.; You, J.; Ouyang, H.; Miao, R. L.; Zhang, C. X.; Wei, K.; Li, H.; Chen, H. T. et al. Ultrafast fiber lasers mode-locked by two-dimensional materials: Review and prospect. Photon. Res. 2020, 8, 78–90.

    Article  CAS  Google Scholar 

  30. Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R. H.; Zhang, Y. P.; Mahmood, A.; Ouyang, Z. B.; Zhang, H.; Guo, Z. Y. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440.

    Article  CAS  Google Scholar 

  31. Zhu, D. Z.; Yan, J. F.; Xie, J. W. Reshaping enhancement of gold nanorods by femtosecond double-pulse laser. Opt. Lett. 2020, 45, 1758–1761.

    Article  PubMed  Google Scholar 

  32. Xie, J. W.; Yan, J. F.; Zhu, D. Z. Atomic simulation of irradiation of Cu film using femtosecond laser with different pulse durations. J. Laser Appl. 2020, 32, 022016.

    Article  CAS  Google Scholar 

  33. Inasawa, S.; Sugiyama, M.; Yamaguchi, Y. Bimodal size distribution of gold nanoparticles under picosecond laser pulses. J. Phys. Chem. B 2005, 109, 9404–9410.

    Article  CAS  PubMed  Google Scholar 

  34. Penilla, E.; Devia-Cruz, L.; Wieg, A. T.; Martinez-Torres, P.; Cuando-Espitia, N.; Sellappan, P.; Kodera, Y.; Aguilar, G.; Garay, J. E. Ultrafast laser welding of ceramics. Science 2019, 365, 803–808.

    Article  CAS  PubMed  Google Scholar 

  35. Plech, A.; Leiderer, P.; Boneberg, J. Femtosecond laser near field ablation. Laser Photon. Rev. 2009, 3, 435–451.

    Article  CAS  Google Scholar 

  36. Voss, J. M.; Olshin, P. K.; Charbonnier, R.; Drabbels, M.; Lorenz, U. J. In situ observation of Coulomb fission of individual plasmonic nanoparticles. ACS Nano 2019, 13, 12445–12451.

    Article  CAS  PubMed  Google Scholar 

  37. Muto, H.; Miyajima, K.; Mafune, F. Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation. J. Phys. Chem. C 2008, 112, 5810–5815.

    Article  CAS  Google Scholar 

  38. Zhu, D. Z.; Yan, J. F.; Xie, J. W.; Liang, Z. W.; Bai, H. L. Ultrafast laser-induced atomic structure transformation of Au nanoparticles with improved surface activity. ACS nano 2021, 15, 13140–13147.

    Article  CAS  PubMed  Google Scholar 

  39. Baffou, G.; Quidant, R. Thermo- plasmonics: Using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 2013, 7, 171–187.

    Article  CAS  Google Scholar 

  40. Zhu, D. Z.; Yan, J. F.; Xie, J. W.; He, G. Z. Atomic-level ablation of Au@Ag NRs using ultrafast laser excitation. Nanoscale 2021, 13, 17350–17358.

    Article  CAS  PubMed  Google Scholar 

  41. Ihm, Y.; Cho, D. H.; Sung, D.; Nam, D.; Jung, C.; Sato, T.; Kim, S.; Park, J.; Kim, S.; Gallagher-Jones, M. et al. Direct observation of picosecond melting and disintegration of metallic nanoparticles. Nat. Commun. 2019, 10, 2411.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schust, J.; Mangold, F.; Sterl, F.; Metz, N.; Schumacher, T.; Lippitz, M.; Hentschel, M.; Giessen, H. Spatially resolved nonlinear plasmonics. Nano Lett. 2023, 23, 5141–5147.

    Article  CAS  PubMed  Google Scholar 

  43. Albrecht, W.; Arslan Irmak, E.; Altantzis, T.; Pedrazo-Tardajos, A.; Skorikov, A.; Deng, T. S.; van der Hoeven, J. E. S.; van Blaaderen, A.; van Aert, S.; Bals, S. 3D atomic-scale dynamics of laser-light-induced restructuring of nanoparticles unraveled by electron tomography. Adv. Mater. 2021, 33, 2100972.

    Article  CAS  Google Scholar 

  44. Fang, A. Q.; White, S.; Jain, P. K.; Zamborini, F. P. Regioselective plasmonic coupling in metamolecular analogs of benzene derivatives. Nano Lett. 2015, 16, 542–548.

    Article  Google Scholar 

  45. Zhu, D. Z.; Xie, J. W.; Yan, J. F.; He, G. Z.; Qiao, M. Ultrafast laser plasmonic fabrication of nanocrystals by molecule modulation for photoresponse multifunctional structures. Adv. Mater., 2023, 35, 2211983.

    Article  CAS  Google Scholar 

  46. Krishnan, U.; Kaur, M.; Singh, K.; Kumar, M.; Kumar, A. A synoptic review of MoS2: Synthesis to applications. Superlattices Microstruct. 2019, 128, 274–297.

    Article  CAS  Google Scholar 

  47. Liu, Y. D.; Guo, J. M.; Yu, A. F.; Zhang, Y.; Kou, J. Z.; Zhang, K.; Wen, R. M.; Zhang, Y.; Zhai, J. Y.; Wang, Z. L. Magnetic-induced-piezopotential gated MoS2 field- effect transistor at room temperature. Adv. Mater. 2018, 30, 1704524.

    Article  Google Scholar 

  48. Naqi, M.; Kim, B.; Kim, S. W.; Kim, S. Pulsed gate switching of MoS2 field- effect transistor based on flexible polyimide substrate for ultrasonic detectors. Adv. Funct. Mater. 2021, 31, 2007389.

    Article  CAS  Google Scholar 

  49. Kumar, R.; Zheng, W.; Liu, X. H.; Zhang, J.; Kumar, M. MoS2-based nanomaterials for room-temperature gas sensors. Adv. Mater. Technol. 2020, 5, 1901062.

    Article  CAS  Google Scholar 

  50. Bello, I. T.; Oladipo, A. O.; Adedokun, O.; Dhlamini, S. M. Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: A mini-review. Mater. Today Commun. 2020, 25, 101664.

    Article  CAS  Google Scholar 

  51. Wang, M. M.; Li, D. W.; Liu, K.; Guo, Q. T.; Wang, S. M.; Li, X. Nonlinear optical imaging, precise layer thinning, and phase engineering in MoTe2 with femtosecond laser. ACS Nano 2020, 14, 11169–11177.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, D. Z.; Qiao, M.; Yan, J. F.; Xie, J. W.; Guo, H.; Deng, S. F.; He, G. Z.; Zhao, Y. Z.; Luo, M. Three-dimensional patterning of MoS2 with ultrafast laser. Nanoscale 2023, 15, 14837–14846.

    Article  CAS  PubMed  Google Scholar 

  53. Hu, S.; Elliott, E.; Sánchez-Iglesias, A.; Huang, J. Y.; Guo, C. Y.; Hou, Y. D.; Kamp, M.; Goerlitzer, E. S. A.; Bedingfield, K.; de Nijs, B. et al. Full control of plasmonic nanocavities using gold decahedra-on-mirror constructs with monodisperse facets. Adv. Sci. 2023, 10, 2207178.

    Article  CAS  Google Scholar 

  54. Jakob, L. A.; Deacon, W. M.; Zhang, Y.; de Nijs, B.; Pavlenko, E.; Hu, S.; Carnegie, C.; Neuman, T.; Esteban, R.; Aizpurua, J. et al. Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering. Nat. Commun. 2023, 14, 3291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cui, M. Y.; Huang, T.; Peng, Z. Y.; Xing, L. R.; Zhou, Z.; Guo, L.; Wang, J. L.; Xu, J. J.; Xiao, R. S. High-efficiency and low-intensity threshold femtosecond laser direct writing of precise metallic micropatterns on transparent substrate. Adv. Mater. Technol. 2023, 8, 2201610.

    Article  CAS  Google Scholar 

  56. Han, F.; Gu, S. Y.; Klimas, A.; Zhao, N.; Zhao, Y. X.; Chen, S. C. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 2022, 378, 1325–1331.

    Article  CAS  PubMed  Google Scholar 

  57. Li, F.; Liu, S. F.; Liu, W. Y.; Hou, Z. W.; Jiang, J. X.; Fu, Z.; Wang, S.; Si, Y. L.; Lu, S. Y.; Zhou, H. W. et al. 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals. Science 2023, 381, 1468–1474

    Article  CAS  PubMed  Google Scholar 

  58. Liu, S. F.; Hou, Z. W.; Lin, L. H.; Li, F.; Zhao, Y.; Li, X. Z.; Zhang, H.; Fang, H. H.; Li, Z. C.; Sun, H. B. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science 2022, 377, 1112–1116

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, X. L.; Jin, H.; Liu, J. Y.; Chao, J. L.; Liu, T. Y.; Zhang, H.; Wang, G.; Lyu, W. H.; Wageh, S.; Al-Hartomy, O. A. et al. Integration and applications of nanomaterials for ultrafast photonics. Laser Photon. Rev. 2022, 13, 2200386.

    Article  Google Scholar 

  60. Huang, X. J.; Guo, Q. Y.; Yang, D. D.; Xiao, X. D.; Liu, X. F.; Xia, Z. G.; Fan, F. J.; Qiu, J. R.; Dong, G. P. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photon. 2020, 14, 82–88.

    Article  CAS  Google Scholar 

  61. Vorobyev, A. Y.; Guo, C. L. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photon. Rev. 2013, 7, 385–407.

    Article  CAS  Google Scholar 

  62. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ge, J.; Wang, X.; Drack, M.; Volkov, O.; Liang, M.; Cañón Bermúdez, G. S.; Illing, R.; Wang, C. G.; Zhou, S. Q.; Fassbender, J. et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat. Commun. 2019, 10, 4405.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Anderson, M.; Ediger, A.; Tsubaki, A.; Zuhlke, C.; Alexander, D.; Gogos, G.; Shield, J. E. Surface and microstructure investigation of picosecond versus femtosecond laser pulse processed copper. Surf. Coat. Technol. 2021, 409, 126872.

    Article  CAS  Google Scholar 

  65. Ma, Y.; Wu, H.; Zhou, X.; Li, K.; Liao, Y.; Liang, Z.; Liu, L. Corrosion behavior of anodized Al-Cu-Li alloy: The role of intermetallic particle-introduced film defects. Corros. Sci. 2019, 158, 108110.

    Article  CAS  Google Scholar 

  66. Vorobyev, A. Y.; Guo, C. L. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt. Express 2011, 19, A1031–A1036.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, D. H.; Sun, Q. Q.; Hokkanen, M. J.; Zhang, C. L.; Lin, F. Y.; Liu, Q.; Zhu, S. P.; Zhou, T. F.; Chang, Q.; He, B. et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59.

    Article  CAS  PubMed  Google Scholar 

  68. Vercillo, V.; Tonnicchia, S.; Romano, J. M.; García-Girón, A.; Aguilar-Morales, A. I.; Alamri, S.; Dimov, S. S.; Kunze, T.; Lasagni, A. F.; Bonaccurso, E. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications. Adv. Funct. Mater. 2020, 30, 1910268.

    Article  CAS  Google Scholar 

  69. Hu, Y. L.; Yuan, H. W.; Liu, S. L.; Ni, J. C.; Lao, Z. X.; Xin, C.; Pan, D.; Zhang, Y. Y.; Zhu, W. L.; Li, J. W. et al. Chiral assemblies of laser-printed micropillars directed by asymmetrical capillary force. Adv. Mater. 2020, 32, 2002356.

    Article  CAS  Google Scholar 

  70. Niu, H. S.; Gao, S.; Yue, W. J.; Li, Y.; Zhou, W. J.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020, 16, 1904774.

    Article  CAS  Google Scholar 

  71. Rudenko, A.; Abou-Saleh, A.; Pigeon, F.; Mauclair, C.; Garrelie, F.; Stoian, R.; Colombier, J. P. High- frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited metal surfaces. Acta Mater. 2020, 194, 93–105.

    Article  CAS  Google Scholar 

  72. Wang, X. W.; Kuchmizhak, A. A.; Li, X.; Juodkazis, S.; Vitrik, O. B.; Kulchin, Y. N.; Zhakhovsky, V.; Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I. et al. Laser- induced translative hydrodynamic mass snapshots: Noninvasive characterization and predictive modeling via mapping at nanoscale. Phys. Rev. Appl. 2017, 8, 044016.

    Article  Google Scholar 

  73. He, M.; Wu, C. P.; Shugaev, M. V.; Samolyuk, G. D.; Zhigilei, L. V. Computational study of short-pulse laser-induced generation of crystal defects in Ni-based single-phase binary solid-solution alloys. J. Phys. Chem. C 2019, 123, 2202–2215.

    Article  CAS  Google Scholar 

  74. Mo, M. Z.; Chen, Z. J.; Glenzer, S. Ultrafast visualization of phase transitions in nonequilibrium warm dense matter. MRS Bull. 2021, 46, 694–703.

    Article  Google Scholar 

  75. Sedao, X.; Abou Saleh, A.; Rudenko, A.; Douillard, T.; Esnouf, C.; Reynaud, S.; Maurice, C.; Pigeon, F.; Garrelie, F.; Colombier, J. P. Self-arranged periodic nanovoids by ultrafast laser-induced near-field enhancement. ACS Photon. 2018, 5, 1418–1426.

    Article  CAS  Google Scholar 

  76. Tsibidis, G. D.; Fotakis, C.; Stratakis, E. From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys. Rev. B 2015, 92, 041405(R).

    Article  Google Scholar 

  77. Guay, J. M.; Calà Lesina, A.; Côté, G.; Charron, M.; Poitras, D.; Ramunno, L.; Berini, P.; Weck, A. Laser- induced plasmonic colours on metals. Nat. Commun. 2017, 8, 16095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, C. Y.; Duan, S.; Wen, B. Y.; Li, S. B.; Kathiresan, M.; Xie, L. Q.; Chen, S.; Anema, J. R.; Mao, B. W.; Luo, Y. et al. Observation of inhomogeneous plasmonic field distribution in a nanocavity. Nat. Nanotechnol. 2020, 15, 922–926.

    Article  CAS  PubMed  Google Scholar 

  79. Wu, C. P.; Zhigilei, L. V. Nanocrystalline and polyicosahedral structure of a nanospike generated on metal surface irradiated by a single femtosecond laser pulse. J. Phys. Chem. C 2016, 120, 4438–4447.

    Article  CAS  Google Scholar 

  80. Xie, J. W.; Yan, J. F.; Zhu, D. Z.; He, G. Z. Atomic-level insight into the formation of subsurface dislocation layer and its effect on mechanical properties during ultrafast laser micro/nano fabrication. Adv. Funct. Mater. 2022, 32, 2108802.

    Article  CAS  Google Scholar 

  81. Sharma, S. M.; Turneaure, S. J.; Winey, J. M.; Gupta, Y. M. What determines the fcc-bcc structural transformation in shock compressed noble metals. Phys. Rev. Lett. 2020, 124, 235701.

    Article  CAS  PubMed  Google Scholar 

  82. Thevamaran, R.; Griesbach, C.; Yazdi, S.; Ponga, M.; Alimadadi, H.; Lawal, O.; Jeon, S. J.; Thomas, E. L. Dynamic martensitic phase transformation in single-crystal silver microcubes. Acta Mater. 2020, 182, 131–143.

    Article  CAS  Google Scholar 

  83. Lu, J. Z.; Wu, L. J.; Sun, G. F.; Luo, K. Y.; Zhang, Y. K.; Cai, J.; Cui, C. Y.; Luo, X. M. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Mater. 2017, 127, 252–266.

    Article  CAS  Google Scholar 

  84. Wu, C. P.; Christensen, M. S.; Savolainen, J. M.; Balling, P.; Zhigilei, L. V. Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target. Phys. Rev. B 2015, 91, 035413.

    Article  Google Scholar 

  85. Zhang, L.; Huang, H.; Zhao, H. W.; Ma, Z. C.; Yang, Y. H.; Hu, X. L. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation. Nanoscale Res. Lett. 2013, 8, 211.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ferreira, R.; Carvalho, Ó.; Sobral, L.; Carvalho, S.; Silva, F. Laser texturing of piston ring for tribological performance improvement. Friction 2023, 11, 1895–1905.

    Article  Google Scholar 

  87. Liu, Z. Y.; Yang, J.; Li, Y. L.; Li, W. Y.; Chen, J. S.; Shen, L.; Zhang, P. L.; Yu, Z. S. Wetting and spreading behaviors of Al-Si alloy on surface textured stainless steel by ultrafast laser. Appl. Surf. Sci. 2020, 520, 146316.

    Article  CAS  Google Scholar 

  88. Chen, Z. J.; Yang, J.; Liu, H. B.; Zhao, Y. X.; Pan, R. A short review on functionalized metallic surfaces by ultrafast laser micromachining. Int. J. Adv. Manuf. Technol. 2022, 119, 6919–6948.

    Article  Google Scholar 

  89. Xie, J. W.; Qiao, M.; Zhu, D. Z.; Yan, J. F.; Deng, S. F.; He, G. Z.; Luo, M.; Zhao, Y. Z. Laser induced coffee-ring structure through solid-liquid transition for color printing. Small 2023, 19, 2205696.

    Article  CAS  Google Scholar 

  90. Trdan, U.; Skarba, M.; Grum, J. Laser shock peening effect on the dislocation transitions and grain refinement of Al-Mg-Si alloy. Mater. Charact. 2014, 97, 57–68.

    Article  CAS  Google Scholar 

  91. Ye, C.; Liao, Y. L.; Cheng, G. J. Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160. Adv. Eng. Mater. 2010, 12, 291–297.

    Article  CAS  Google Scholar 

  92. Li, J.; Zhou, J. Z.; Liu, L.; Feng, A. X.; Huang, S.; Meng, X. K. High-cycle bending fatigue behavior of TC6 titanium alloy subjected to laser shock peening assisted by cryogenic temperature. Surf. Coat. Technol. 2021, 409, 126848.

    Article  CAS  Google Scholar 

  93. Zhang, H.; Ren, Z. C.; Liu, J.; Zhao, J. Y.; Liu, Z. K.; Lin, D.; Zhang, R. X.; Graber, M. J.; Thomas, N. K.; Kerek, Z. D. et al. Microstructure evolution and electroplasticity in Ti64 subjected to electropulsing-assisted laser shock peening. J. Alloys Compd. 2019, 802, 573–582.

    Article  CAS  Google Scholar 

  94. Meng, X. K.; Leng, X. M.; Shan, C.; Zhou, L. C.; Zhou, J. Z.; Huang, S.; Lu, J. Z. Vibration fatigue performance improvement in 2024-T351 aluminum alloy by ultrasonic-assisted laser shock peening. Int. J. Fatigue 2023, 168, 107471.

    Article  CAS  Google Scholar 

  95. He, G. Z.; Yan, J. F.; Zhu, D. Z.; Xie, J. W. Improvement of laser shock peening depth through regulation of surface optical absorption. Adv. Mater. Interfaces 2022, 9, 2101232.

    Article  CAS  Google Scholar 

  96. Khodasevych, I. E.; Wang, L. P.; Mitchell, A.; Rosengarten, G. Micro- and nanostructured surfaces for selective solar absorption. Adv. Opt. Mater. 2015, 3, 852–881.

    Article  CAS  Google Scholar 

  97. Yang, J. J.; Zhang, X. F.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Beyond the visible: Bioinspired infrared adaptive materials. Adv. Mater. 2021, 33, 2004754.

    Article  CAS  Google Scholar 

  98. He, G. Z.; Qian, C. K.; Cai, Z. P.; Li, K. J.; Liu, Q.; Yan, J. F. Magnetic field-assisted laser shock peening of Ti6Al4V alloy. Adv. Eng. Mater., 2023, 25, 2201843.

    Article  CAS  Google Scholar 

  99. He, D. S.; Li, L. H.; Guo, W.; He, G. Z.; Peng, P.; Shao, T. W.; Huan, H.; Zhang, G. X.; Han, G. F.; Yan, J. F. Improvement in oxidation resistance of Ti2AlNb alloys at high temperatures by laser shock peening. Corros. Sci. 2021, 184, 109364.

    Article  CAS  Google Scholar 

  100. Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121–1125.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, J.; Zhu, D. Z.; Yan, J. F.; Wang, C. A. Strong metal-support interactions induced by an ultrafast laser. Nat. Commun. 2021, 12, 6665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kerse, C.; Kalaycioǧlu, H.; Elahi, P.; Çetin, B.; Kesim, D. K.; Akçaalan, Ö.; Yavaş, S.; Aşık, M. D.; Öktem, B.; Hoogland, H. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 2016, 537, 84–88.

    Article  CAS  PubMed  Google Scholar 

  103. Yu, J. C.; Yan, J. F.; Jiang, L. Crystallization of polymorphic sulfathiazole controlled by femtosecond laser-induced cavitation bubbles. Cryst. Growth Des. 2021, 21, 3202–3210.

    Article  CAS  Google Scholar 

  104. Sidhu, M. S.; Kumar, B.; Singh, K. P. The processing and heterostructuring of silk with light. Nat. Mater. 2017, 16, 938–945.

    Article  CAS  PubMed  Google Scholar 

  105. Arefin, A.; Mcculloch, Q.; Martinez, R.; Martin, S. A.; Singh, R.; Ishak, O. M.; Higgins, E. M.; Haffey, K. E.; Huang, J. H.; Iyer, S. et al. Micromachining of polyurethane membranes for tissue engineering applications. ACS Biomater. Sci. Eng. 2018, 4, 3522–3533.

    Article  CAS  PubMed  Google Scholar 

  106. Yu, J. C.; Jiang, L.; Yan, J. F.; Li, W. Q. Microprocessing on single protein crystals using femtosecond pulse laser. ACS Biomater. Sci. Eng. 2020, 3, 6445–6452.

    Article  Google Scholar 

  107. Wu, Y.; Ali, M. R. K.; Chen, K. C.; Fang, N.; El-Sayed, M. A. Gold nanoparticles in biological optical imaging. Nano Today 2019, 24, 120–140.

    Article  CAS  Google Scholar 

  108. Choi, J. H.; Lim, J.; Shin, M.; Paek, S. H.; Choi, J. W. CRISPR-Cas12a-based nucleic acid amplification-free DNA biosensor via Au nanoparticle-assisted metal-enhanced fluorescence and colorimetric analysis. Nano Lett. 2020, 21, 693–699.

    Article  PubMed  Google Scholar 

  109. Zhou, J.; Jangili, P.; Son, S.; Ji, M. S.; Won, M.; Kim, J. S. Fluorescent diagnostic probes in neurodegenerative diseases. Adv. Mater. 2020, 32, 2001945.

    Article  CAS  Google Scholar 

  110. Guan, J.; Sagar, L. K.; Li, R.; Wang, D. Q.; Bappi, G.; Wang, W. J.; Watkins, N.; Bourgeois, M. R.; Levina, L.; Fan, F. J. et al. Quantum dot-plasmon lasing with controlled polarization patterns. ACS nano 2020, 14, 3426–3433.

    Article  CAS  PubMed  Google Scholar 

  111. Freire-Fernández, F.; Cuerda, J.; Daskalakis, K. S.; Perumbilavil, S.; Martikainen, J. P.; Arjas, K.; Törmä, P.; van Dijken, S. Magnetic on-off switching of a plasmonic laser. Nat. Photon. 2022, 16, 27–32.

    Article  Google Scholar 

  112. Yu, J. C.; Yan, J. F.; Jiang, L.; Li, J. Q.; Guo, H.; Qiao, M.; Qu, L. T. Fluorescence enhancement of organic dyes by femtosecond laser-induced cavitation bubbles for crystal imaging. Nanoscale 2023, 16, 8730–8739.

    Article  Google Scholar 

  113. Wang, L. Z.; Jiang, G. C.; Tian, Z.; Chen, C. H.; Hu, X. Y.; Peng, R.; Zhang, H. J.; Fan, P. X.; Zhong, M. L. Superhydrophobic microstructures for better anti-icing performances: Open-cell or closed-cell. Mater. Horiz. 2023, 10, 209–220.

    Article  CAS  PubMed  Google Scholar 

  114. Chen, C. H.; Tian, Z.; Luo, X.; Jiang, G. C.; Hu, X. Y.; Wang, L. Z.; Peng, R.; Zhang, H. J.; Zhong, M. L. Cauliflower-like micro-nano structured superhydrophobic surfaces for durable anti-icing and photothermal de-icing. Chem. Eng. J. 2022, 450, 137936.

    Article  CAS  Google Scholar 

  115. Ma, Y. L.; Jiang, L.; Hu, J.; Yuan, Y. J. Engineering a multiscale multifunctional theragenerative system for enhancing osteosarcoma therapy, bone regeneration and bacterial eradication. Chem. Eng. J. 2022, 430, 132622.

    Article  CAS  Google Scholar 

  116. Le, T. S. D.; Lee, Y. A.; Nam, H. K.; Jang, K. Y.; Yang, D.; Kim, B.; Yim, K.; Kim, S. W.; Yoon, H.; Kim, Y. J. Green flexible graphene-inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses. Adv. Funct. Mater. 2022, 32, 2107768.

    Article  CAS  Google Scholar 

  117. Li, Q.; Wang, Q. Z.; Li, L. L.; Yang, L. J.; Wang, Y.; Wang, X. H.; Fang, H. T. Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections. Adv. Energy Mater. 2020, 10, 2000470.

    Article  CAS  Google Scholar 

  118. Ji, Y. Q.; Zhang, Y.; Zhu, J. Q.; Geng, P.; Halpert, J. E.; Guo, L. Splashing-assisted femtosecond laser-activated metal deposition for mold- and mask-free fabrication of robust microstructured electrodes for flexible pressure sensors. Small 2023, 19, 2207362.

    Article  CAS  Google Scholar 

  119. Moreddu, R.; Nasrollahi, V.; Kassanos, P.; Dimov, S.; Vigolo, D.; Yetisen, A. K. Lab-on-a-contact lens platforms fabricated by multi-axis femtosecond laser ablation. Small 2021, 17, 2102008.

    Article  CAS  Google Scholar 

  120. Chen, W. T.; Zhu, A. Y.; Sisler, J.; Bharwani, Z.; Capasso, F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 2019, 10, 355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wen, D. D.; Cadusch, J. J.; Meng, J. J.; Crozier, K. B. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images. Adv. Funct. Mater. 2020, 30, 1906415.

    Article  CAS  Google Scholar 

  122. Wu, Y. K.; Yang, W. H.; Fan, Y. B.; Song, Q. H.; Xiao, S. M. TiO2 metasurfaces: From visible planar photonics to photochemistry. Sci. Adv. 2019, 5, eaax0939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Khorasaninejad, M.; Chen, W. T.; Devlin, R. C.; Oh, J.; Zhu, A. Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194.

    Article  CAS  PubMed  Google Scholar 

  124. Qiao, M.; Yan, J. F.; Jiang, L. Direction controllable nano-patterning of titanium by ultrafast laser for surface coloring and optical encryption. Adv. Opt. Mater. 2022, 10, 2101673.

    Article  CAS  Google Scholar 

  125. Song, B. S.; Noda, S.; Asano, T. Photonic devices based on inplane hetero photonic crystals. Science 2003, 300, 1537.

    Article  CAS  PubMed  Google Scholar 

  126. Withayachumnankul, W.; Fujita, M.; Nagatsuma, T. Integrated silicon photonic crystals toward terahertz communications. Adv. Opt. Mater. 2018, 6, 1800401.

    Article  Google Scholar 

  127. Zhang, B.; Li, L. Q.; Wu, B.; Liu, H. L.; Wu, P. F.; Wang, L.; Chen, F. Femtosecond laser inscribed novel polarization beam splitters based on tailored waveguide configurations. J. Lightw. Technol. 2021, 39, 1438–1443.

    Article  CAS  Google Scholar 

  128. Lv, J. M.; Hong, B. B.; Tan, Y.; Chen, F.; de Aldana, J. R. V.; Wang, G. P. Mid- infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching. Photon. Res. 2020, 8, 257–262.

    Article  CAS  Google Scholar 

  129. Yang, L.; Mayer, F.; Bunz, U. H. F.; Blasco, E.; Wegener, M. Multimaterial multi-photon 3D laser micro- and nanoprinting. Light Adv. Manuf. 2021, 2, 296–312.

    Google Scholar 

  130. Tokel, O.; Turnalı, A.; Makey, G.; Elahi, P.; Çolakoǧlu, T.; Ergeçen, E.; Yavuz, Ö.; Hübner, R.; Zolfaghari Borra, M.; Pavlov, I. et al. In- chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat. Photon. 2017, 11, 639–645.

    Article  CAS  Google Scholar 

  131. Li, J. Q.; Yan, J. D.; Jiang, L.; Yu, J. C.; Guo, H.; Qu, L. T. Nanoscale multi-beam lithography of photonic crystals with ultrafast laser. Light Sci. Appl. 2023, 12, 164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, Y. F.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X. L.; Ye, J. F.; Chen, Y.; Xie, R. Z.; Zhou, Y. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 2021, 4, 357–363.

    Article  CAS  Google Scholar 

  133. Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

    Article  CAS  Google Scholar 

  134. Chang, C.; Wu, H. H.; He, D. S.; Pei, Y. L.; Wu, C. F.; Wu, X. F.; Yu, H. L.; Zhu, F. Y.; Wang, K. D.; Chen, Y. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018, 360, 778–783

    Article  CAS  PubMed  Google Scholar 

  135. Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

    Article  CAS  PubMed  Google Scholar 

  136. Yan, J. F.; Deng, S. F.; Zhu, D. Z.; Bai, H. L.; Zhu, H. W. Self-powered SnSe photodetectors fabricated by ultrafast laser. Nano Energy 2022, 97, 107188.

    Article  CAS  Google Scholar 

  137. Chen, J. W.; Lee, P. S. Electrochemical supercapacitors: From mechanism understanding to multifunctional applications. Adv. Energy Mater. 2021, 11, 2003311.

    Article  CAS  Google Scholar 

  138. Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163.

    Article  CAS  PubMed  Google Scholar 

  139. Gao, J.; Shao, C. X.; Shao, S. X.; Bai, C. C.; Khalil, U. R.; Zhao, Y.; Jiang, L.; Qu, L. T. Laser- assisted multiscale fabrication of configuration-editable supercapacitors with high energy density. ACS Nano 2019, 13, 7463–7470.

    Article  CAS  PubMed  Google Scholar 

  140. Ye, J. L.; Tan, H. B.; Wu, S. L.; Ni, K.; Pan, F.; Liu, J.; Tao, Z. C.; Qu, Y.; Ji, H. X.; Simon, P. et al. Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater. 2018, 30, 1801384.

    Article  Google Scholar 

  141. Jiao, S. Q.; Zhou, A. G.; Wu, M. Z.; Hu, H. B. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 2019, 6, 1900529.

    Article  Google Scholar 

  142. Guo, H.; Yan, J. F.; Jiang, L.; Deng, S. F.; Lin, X. Z.; Qu, L. T. Femtosecond laser bessel beam fabrication of a supercapacitor with a nanoscale electrode gap for high specific volumetric capacitance. ACS Appl. Mater. Interfaces 2022, 14, 39220–39229.

    Article  CAS  PubMed  Google Scholar 

  143. Zhuang, P. Y.; Sun, Y. Y.; Li, L.; Chee, M. O. L.; Dong, P.; Pei, L. Y.; Chu, H.; Sun, Z. Z.; Shen, J. F.; Ye, M. X. et al. FIB-patterned nano-supercapacitors: Minimized size with ultrahigh performances. Adv. Mater. 2020, 32, 1908072.

    Article  CAS  Google Scholar 

  144. Yan, Z. G.; Wang, L. L.; Xia, Y. F.; Qiu, R. D.; Liu, W. Q.; Wu, M.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Zhu, M. M. et al. Flexible highresolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 2021, 31, 2100709.

    Article  CAS  Google Scholar 

  145. Khodabandehlo, A.; Noori, A.; Rahmanifar, M. S.; El-Kady, M. F.; Kaner, R. B.; Mousavi, M. F. Laser- scribed graphene-polyaniline microsupercapacitor for internet-of-things applications. Adv. Funct. Mater. 2022, 32, 2204555.

    Article  CAS  Google Scholar 

  146. Le, T. S. D.; Park, S.; An, J. N.; Lee, P. S.; Kim, Y. J. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv. Funct. Mater. 2019, 29, 1902771.

    Article  Google Scholar 

  147. Xie, J. W.; Zhao, Y. Z.; Zhu, D. Z.; Yan, J. F.; Li, J. Q.; Qiao, M.; He, G. Z.; Deng, S. F. A machine learning-combined flexible sensor for tactile detection and voice recognition. ACS Appl. Mater. Interfaces 2023, 15, 12551–12559.

    Article  CAS  PubMed  Google Scholar 

  148. Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

    Article  CAS  PubMed  Google Scholar 

  149. Shi, X. Y.; Zhou, F.; Peng, J. X.; Wu, R. A.; Wu, Z. S.; Bao, X. H. One-step scalable fabrication of graphene-integrated micro-supercapacitors with remarkable flexibility and exceptional performance uniformity. Adv. Funct. Mater. 2019, 29, 1902860.

    Article  CAS  Google Scholar 

  150. Guo, H.; Yan, J. F.; Jiang, L.; Qu, L. T.; Yin, J. G.; Lu, J. G. Conductive writing with high precision by laser-induced point-to-line carbonization strategy for flexible supercapacitors. Adv. Opt. Mater. 2021, 9, 2100793.

    Article  CAS  Google Scholar 

  151. Jayaramulu, K.; Horn, M.; Schneemann, A.; Saini, H.; Bakandritsos, A.; Ranc, V.; Petr, M.; Stavila, V.; Narayana, C.; Scheibe, B. et al. Covalent graphene-mof hybrids for high-performance asymmetric supercapacitors. Adv. Mater. 2021, 33, 2004560.

    Article  CAS  Google Scholar 

  152. Zhang, P. P.; Wang, F. X.; Yang, S.; Wang, G.; Yu, M. H.; Feng, X. L. Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Mater. 2020, 28, 160–187.

    Article  CAS  Google Scholar 

  153. Zhou, C. X.; Gao, T. T.; Wang, Y. J.; Liu, Q. L.; Huang, Z. H.; Liu, X. X.; Qing, M. Q.; Xiao, D. Synthesis of p-doped and NiCo-hybridized graphene-based fibers for flexible asymmetrical solidstate micro-energy storage device. Small 2019, 15, 1803469.

    Article  Google Scholar 

  154. Wang, Y. M.; Wang, X.; Li, X. L.; Liu, R.; Bai, Y.; Xiao, H. H.; Liu, Y.; Yuan, G. H. Intercalating ultrathin MoO3 nanobelts into MXene film with ultrahigh volumetric capacitance and excellent deformation for high-energy-density devices. Nano-Micro Lett. 2020, 12, 115.

    Article  CAS  Google Scholar 

  155. Huang, A. L.; El-Kady, M. F.; Chang, X. Y.; Anderson, M.; Lin, C. W.; Turner, C. L.; Kaner, R. B. Facile fabrication of multivalent VOx/graphene nanocomposite electrodes for high-energy-density symmetric supercapacitors. Adv. Energy Mater. 2021, 11, 2100768.

    Article  CAS  Google Scholar 

  156. Zhou, Y.; Qi, H. L.; Yang, J. Y.; Bo, Z.; Huang, F.; Islam, M. S.; Lu, X. Y.; Dai, L. M.; Amal, R.; Wang, C. H. et al. Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci. 2021, 14, 1854–1896.

    Article  CAS  Google Scholar 

  157. Yuan, Y. J.; Jiang, L.; Li, X.; Zuo, P.; Xu, C. Y.; Tian, M. Y.; Zhang, X. Q.; Wang, S. M.; Lu, B.; Shao, C. X. et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat. Commun. 2020, 11, 6185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Guo, H.; Qiao, M.; Yan, J. F.; Jiang, L.; Yu, J. C.; Li, J. Q.; Deng, S. F.; Qu, L. T. Fabrication of hybrid supercapacitor by MoCl5 precursor-assisted carbonization with ultrafast laser for improved capacitance performance. Adv. Funct. Mater. 2023, 33, 2213514.

    Article  CAS  Google Scholar 

  159. Hu, Y. J.; Wu, M. M.; Chi, F. Y.; Lai, G. B.; Li, P. Y.; He, W. Y.; Lu, B.; Weng, C. X.; Lin, J. G.; Chen, F. G. et al. Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 2023, 624, 74–79.

    Article  CAS  PubMed  Google Scholar 

  160. Li, J. Q.; Yan, J. F.; Jiang, L.; Qu, L. T. Chiral lithography with vortex non-diffracted laser for orbital angular momentum detection. Laser Photon. Rev., in press, https://doi.org/10.1002/lpor.202301050.

  161. Deng, S. F.; Guo, H.; Yan, J. F.; Zhu, D. Z.; Li, J. Q.; Qiao, M.; Xie, J. W. NIR-UV dual-mode photodetector with the assistance of machine-learning fabricated by hybrid laser processing. Chem. Eng. J. 2023, 472, 144908.

    Article  CAS  Google Scholar 

  162. Liao, Q. H.; Zhu, K. X.; Hao, X. Z.; Wu, C. X.; Li, J.; Cheng, H. H.; Yan, J. F.; Jiang, L.; Qu, L. T. Bio-inspired ultrathin perfect absorber for high-performance photothermal conversion. Adv. Mater., in press, https://doi.org/10.1002/adma.202313366.

  163. Peng, Z. L.; Guo, W.; Liu, T.; Wang, X. W.; Shen, D. Z.; Zhu, Y.; Zhou, X. W.; Yan, J. F.; Zhang, H. Q. Flexible copper-based thermistors fabricated by laser direct writing for low-temperature sensing. ACS Appl. Mater. Interfaces 2024, 16, 10496–10507.

    Article  CAS  PubMed  Google Scholar 

  164. Zhang, X. L.; Yu, F.; Chen, Z. G.; Tian, Z. N.; Chen, Q. D.; Sun, H. B.; Ma, G. C. Non- Abelian braiding on photonic chips. Nat. Photon. 2022, 16, 390–395.

    Article  CAS  Google Scholar 

  165. Xu, C. Y.; Jiang, L.; Li, X.; Li, C.; Shao, C. X.; Zuo, P.; Liang, M. S.; Qu, L. T.; Cui, T. H. Miniaturized high-performance metallic 1T-phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses. Nano Energy 2020, 67, 104260.

    Article  CAS  Google Scholar 

  166. Ouyang, W. Q.; Xu, X. Y.; Lu, W. P.; Zhao, N.; Han, F.; Chen, S. C. Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 2023, 14, 1716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yang, L.; Hu, H. R.; Scholz, A.; Feist, F.; Cadilha Marques, G.; Kraus, S.; Bojanowski, N. M.; Blasco, E.; Barner-Kowollik, C.; Aghassi-Hagmann, J. et al. Laser printed microelectronics. Nat. Commun. 2023, 14, 1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 52075289) and the Tsinghua-Jiangyin Innovation Special Fund (TJISF, No. 2023JYTH0104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Xie, J., He, G. et al. A review of ultrafast laser micro/nano fabrication: Material processing, surface/interface controlling, and devices fabrication. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6644-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6644-z

Keywords

Navigation