Skip to main content
Log in

Bridging buried interface enable 24.67%-efficiency doctor-bladed perovskite solar cells in ambient condition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Scalable deposition of high-efficiency perovskite solar cells (PSCs) is critical to accelerating their commercial applications. However, a significant number of defects are distributed at the buried interface of perovskite film fabricated by scalable deposition, exhibiting much negative influence on the efficiency and stability of PSCs. Herein, 2-(N-morpholino)ethanesulfonic acid potassium salt (MESK) is incorporated as the bridging layer between the tin oxide (SnO2) electron transport layer (ETL) and the perovskite film deposited via scalable two-step doctor blading. Both experiment and simulation results demonstrate that MESK can passivate the trap states of Sn suspension bonds, thereby enhancing the charge extraction and transport of the SnO2 ETL. Meanwhile, the strong interaction with uncoordinated Pb ions can modulate the crystal growth and crystallographic orientation of perovskite film and passivate buried defects. With employing MESK interface bridging, PSCs fabricated via scalable doctor blading in ambient condition achieve a power conversion efficiency (PCE) of 24.67%, which is one of the highest PCEs for doctor-bladed PSCs, and PSC modules with an active area of 11.35 cm2 achieve a PCE of 19.45%. Furthermore, PSCs exhibit excellent long-term stability, and the unpackaged target device with a storage of 1680 h in ambient condition (25 °C and humidity of 30% relative humidity (RH)) can maintain more than 90% of the initial PCE. The research provides a strategy for constructing a high-performance interface bridge between SnO2 ETL and perovskite film, and achieving efficient and stable large-area PSCs and modules fabricated via scalable doctor-blading process in ambient condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, Z. J.; Bai, Y.; Huang, X. D.; Li, J. T.; Wu, Y. T.; Chen, Y. H.; Li, K. L.; Niu, X. X.; Li, N. X.; Liu, G. L. et al. Amon–π interactions suppress phase impurities in FAPbI3 solar cells. Nature 2023, 635, 531–537.

    Article  Google Scholar 

  2. Park, J.; Kim, J.; Yun, H. S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730.

    Article  CAS  PubMed  Google Scholar 

  3. Liang, Z.; Zhang, Y.; Xu, H. F.; Chen, W. J.; Liu, B. Y.; Zhang, J. Y.; Zhang, H.; Wang, Z. H.; Kang, D. H.; Zeng, J. R. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 2023, 624, 557–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. NREL. Best Research-Cell Efficiency Chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Nov 11, 2023).

  5. Park, N. G.; Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 2020, 5, 333–350.

    Article  CAS  Google Scholar 

  6. Chang, J. H.; Liu, K.; Lin, S. Y.; Yuan, Y. B.; Zhou, C. H.; Yang, J. L. Solution-processed perovskite solar cells. J. Cent. South Univ. 2020, 27, 1104–1133.

    Article  CAS  Google Scholar 

  7. Deng, Y. H.; Xu, S.; Chen, S. S.; Xiao, X.; Zhao, J. J.; Huang, J. S. Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 2021, 6, 633–641.

    Article  CAS  Google Scholar 

  8. Chen, R. H.; Yang, Y.; Dai, Z. Y.; Yuan, L.; Du, J. R.; Yang, P. H.; Yang, Y. Y.; Shen, H.; Liu, Z.; Wang, H. Q. Patch-healed grain boundary strategy to stabilize perovskite films for high-performance solar modules. Nano Energy 2023, 115, 108759.

    Article  CAS  Google Scholar 

  9. Chang, J. H.; Feng, E. M.; Li, H. Y.; Ding, Y.; Long, C. Y.; Gao, Y. J.; Yang, Y. G.; Yi, C. Y.; Zheng, Z. J.; Yang, J. L. Crystallization and orientation modulation enable highly efficient doctor-bladed perovskite solar cells. Nano-Micro Lett. 2023, 15, 164.

    Article  CAS  Google Scholar 

  10. Bu, T. L.; Li, J.; Li, H. Y.; Tian, C. C.; Su, J.; Tong, G. Q.; Ono, L. K.; Wang, C.; Lin, Z. P.; Chai, N. Y. et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 2021, 372, 1327–1332.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, L.; Zheng, D. X.; Li, Z. P.; Farhadi, B.; Peng, L.; Zhao, S.; Chang, Z.; Duan, L. J.; Cao, Y. X.; Wang, H. et al. Surfactant engineering for perovskite solar cells and submodules. Matter 2023, 6, 2987–3005.

    Article  CAS  Google Scholar 

  12. Lee, D. K.; Jeong, D. N.; Ahn, T. K.; Park, N. G. Precursor Engineering for a large-area perovskite solar cell with >19% efficiency. ACS Energy Lett. 2019, 4, 2393–2401.

    Article  CAS  Google Scholar 

  13. Yoo, J. W.; Jang, J.; Kim, U.; Lee, Y.; Ji, S. G.; Noh, E.; Hong, S.; Choi, M.; Seok, S. I. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule 2021, 5, 2420–2436.

    Article  CAS  Google Scholar 

  14. Tan, L. G.; Zhou, J. J.; Zhao, X.; Wang, S. Y.; Li, M. H.; Jiang, C. F.; Li, H.; Zhang, Y.; Ye, Y. R.; Tress, W. et al. Combined vacuum evaporation and solution process for high-efficiency large-area perovskite solar cells with exceptional reproducibility. Adv. Mater. 2023, 35, 2205027.

    Article  CAS  Google Scholar 

  15. Mali, S. S.; Patil, J. V.; Shao, J. Y.; Zhong, Y. W.; Rondiya, S. R.; Dzade, N. Y.; Hong, C. K. Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency. Nat. Energy 2023, 8, 989–1001.

    Article  CAS  Google Scholar 

  16. Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560–566.

    Article  CAS  Google Scholar 

  17. Li, H. Y.; Feng, X. X.; Huang, K. Q.; Lu, S. Y.; Wang, X. Y.; Feng, E. M.; Chang, J. H.; Long, C. Y.; Gao, Y. J.; Chen, Z. H. et al. Constructing additives synergy strategy to doctor-blade efficient CH3NH3PbI3 perovskite solar cells under a wide range of humidity from 45% to 82%. Small 2023, 19, 2300374.

    Article  CAS  Google Scholar 

  18. Deng, Y. H.; Van Brackle, C. H.; Dai, X. Z.; Zhao, J. J.; Chen, B.; Huang, J. S. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 2019, 5, eaax7537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, J. Z.; Dagar, J.; Shargaieva, O.; Maus, O.; Remec, M.; Emery, Q.; Khenkin, M.; Ulbrich, C.; Akhundova, F.; Márquez, J. A. et al. Ink design enabling slot-die coated perovskite solar cells with >22% power conversion efficiency, micro-modules, and 1 year of outdoor performance evaluation. Adv. Energy Mater. 2023, 13, 2203898.

    Article  CAS  Google Scholar 

  20. Rana, P. J. S.; Febriansyah, B.; Koh, T. M.; Muhammad, B. T.; Salim, T.; Hooper, T. J. N.; Kanwat, A.; Ghosh, B.; Kajal, P.; Lew, J. H. et al. Alkali additives enable efficient large area (> 55 cm2) slot-die coated perovskite solar modules. Adv. Funct. Mater. 2022, 32, 2113026.

    Article  CAS  Google Scholar 

  21. Feng, W. H.; Tao, J. L.; Liu, G. L.; Yang, G.; Zhong, J. X.; Fang, Y. X.; Gong, L.; Yang, S. P.; Wu, W. Q. Near-stoichiometric and homogenized perovskite films for solar cells with minimized performance variation. Angew. Chem. 2023, 135, e202300265.

    Article  Google Scholar 

  22. Du, M. Y.; Zhu, X. J.; Wang, L. K.; Wang, H.; Feng, J. S.; Jiang, X.; Cao, Y. X.; Sun, Y. M.; Duan, L. J.; Jiao, Y. X. et al. High-pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efficiency. Adv. Mater. 2020, 32, 2004979.

    Article  CAS  Google Scholar 

  23. Ding, J.; Han, Q. W.; Ge, Q. Q.; Xue, D. J.; Ma, J. Y.; Zhao, B. Y.; Chen, Y. X.; Liu, J.; Mitzi, D. B.; Hu, J. S. Fully air-bladed high-efficiency perovskite photovoltaics. Joule 2019, 3, 402–416.

    Article  CAS  Google Scholar 

  24. Yang, F.; Dong, L. R.; Jang, D.; Saparov, B.; Tam, K. C.; Zhang, K. C.; Li, N.; Brabec, C. J.; Egelhaaf, H. J. Low temperature processed fully printed efficient planar structure carbon electrode perovskite solar cells and modules. Adv. Energy Mater. 2021, 11, 2101219.

    Article  CAS  Google Scholar 

  25. Guo, F.; Qiu, S. D.; Hu, J. L.; Wang, H. H.; Cai, B. Y.; Li, J. J.; Yuan, X. C.; Liu, X. H.; Forberich, K.; Brabec, C. J. et al. A generalized crystallization protocol for scalable deposition of high-quality perovskite thin films for photovoltaic applications. Adv. Sci. 2019, 6, 1901067.

    Article  Google Scholar 

  26. Hu, H.; Ritzer, D. B.; Diercks, A.; Li, Y.; Singh, R.; Fassl, P.; Jin, Q. H.; Schackmar, F.; Paetzold, U. W.; Nejand, B. A. Void-free buried interface for scalable processing of P-I-N-based FAPbI3 perovskite solar modules. Joule 2023, 7, 1574–1592.

    Article  CAS  Google Scholar 

  27. Min, H.; Chang, J.; Tong, Y. F.; Wang, J. Q.; Zhang, F.; Feng, Z. Q.; Bi, X. Y.; Chen, N. N.; Kuang, Z. Y.; Wang, S. X. et al. Additive treatment yields high-performance lead-free perovskite light-emitting diodes. Nat. Photonics 2023, 17, 755–760.

    Article  CAS  Google Scholar 

  28. Zhu, M. F.; Xia, Y. R.; Qin, L. N.; Zhang, K. Q.; Liang, J. C.; Zhao, C.; Hong, D. C.; Jiang, M. H.; Song, X. M.; Wei, J. et al. Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells. Nano Res. 2023, 16, 6849–6858.

    Article  CAS  Google Scholar 

  29. Xia, Y. R.; Zhu, M. F.; Qin, L. N.; Zhao, C.; Hong, D. C.; Tian, Y. X.; Yan, W. S.; Jin, Z. Organic-inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells. Energy Mater. 2023, 3, 300004.

    Article  CAS  Google Scholar 

  30. Zhu, M. F.; Qin, L. N.; Xia, Y. R.; Liang, J. C.; Wang, Y. D.; Hong, D. C.; Tian, Y. X.; Tie, Z. X.; Jin, Z. Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells. Nano Res. 2024, 17, 1508–1515.

    Article  CAS  Google Scholar 

  31. Zhu, M. F.; Qin, L. N.; Xia, Y. R.; Mao, L. Y.; Zhao, P. Y.; Zhao, C.; Hu, Y.; Hong, D. C.; Tian, Y. X.; Tie, Z. X. et al. Indium-doped CsPbI2.5Br0.5 with a tunable band structure and improved crystallinity for thermo-stable all-inorganic perovskite solar cells. ACS Appl. Energy Mater. 2023, 6, 8237–8244.

    Article  CAS  Google Scholar 

  32. Bu, T. L.; Ono, L. K.; Li, J.; Su, J.; Tong, G. Q.; Zhang, W.; Liu, Y. Q.; Zhang, J. H.; Chang, J. J.; Kazaoui, S. et al. Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy 2022, 7, 528–536.

    Article  CAS  Google Scholar 

  33. Chung, J.; Kim, S. W.; Li, Y.; Mariam, T.; Wang, X. M.; Rajakaruna, M.; Saeed, M. M.; Abudulimu, A.; Shin, S. S.; Guye, K. N. et al. Engineering perovskite precursor inks for scalable production of high-efficiency perovskite photovoltaic modules. Adv. Energy Mater. 2023, 13, 2300595.

    Article  CAS  Google Scholar 

  34. Ni, Z. Y.; Xu, S.; Jiao, H. Y.; Gu, H. Y.; Fei, C. B.; Huang, J. S. High grain boundary recombination velocity in polycrystalline metal halide perovskites. Sci. Adv. 2022, 8, eabq8345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park, K.; Lee, J. H.; Lee, J. W. Surface defect engineering of metal halide perovskites for photovoltaic applications. ACS Energy Lett. 2022, 7, 1230–1239.

    Article  CAS  Google Scholar 

  36. Li, X. D.; Zhang, W. X.; Guo, X. M.; Lu, C. Y.; Wei, J. Y.; Fang, J. F. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 2022, 375, 434–437.

    Article  CAS  PubMed  Google Scholar 

  37. Park, S. M.; Wei, M. Y.; Xu, J.; Atapattu, H. R.; Eickemeyer, F. T.; Darabi, K.; Grater, L.; Yang, Y.; Liu, C.; Teale, S. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 2023, 381, 209–215.

    Article  CAS  PubMed  Google Scholar 

  38. Shen, L. N.; Song, P. Q.; Zheng, L. F.; Wang, L. P.; Zhang, X. G.; Liu, K. K.; Liang, Y. M.; Tian, W. J.; Luo, Y. J.; Qiu, J. H. et al. Iondiffusion management enables all-interface defect passivation of perovskite solar cells. Adv. Mater. 2023, 35, 2301624.

    Article  CAS  Google Scholar 

  39. Rana, P. J. S.; Febriansyah, B.; Koh, T. M.; Kanwat, A.; Xia, J. M.; Salim, T.; Hooper, T. J. N.; Kovalev, M.; Giovanni, D.; Aw, Y. C. et al. Molecular locking with all-organic surface modifiers enables stable and efficient slot-die-coated methyl-ammonium-free perovskite solar modules. Adv. Mater. 2023, 35, 2210176.

    Article  CAS  Google Scholar 

  40. Sun, X. H.; Li, Y. H.; Liu, D. C.; Liu, R. C.; Zhang, B. Q.; Tian, Q. Y.; Fan, B.; Wang, X. Z.; Li, Z. P.; Shao, Z. P. et al. VOC of inverted perovskite solar cells based on N-doped PCBM exceeds 1.2 V: Interface energy alignment and synergistic passivation. Adv. Energy Mater. 2023, 13, 2302191.

    Article  CAS  Google Scholar 

  41. Yang, X. Y.; Luo, D. Y.; Xiang, Y. R.; Zhao, L. C.; Anaya, M.; Shen, Y. L.; Wu, J.; Yang, W. Q.; Chiang, Y. H.; Tu, Y. G. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 2021, 33, 2006435.

    Article  CAS  Google Scholar 

  42. Levine, I.; Al-Ashouri, A.; Musiienko, A.; Hempel, H.; Magomedov, A.; Drevilkauskaite, A.; Getautis, V.; Menzel, D.; Hinrichs, K.; Unold, T. et al. Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 2021, 5, 2915–2933.

    Article  CAS  Google Scholar 

  43. Luo, C.; Zheng, G. H. J.; Gao, F.; Wang, X. J.; Zhan, C. L.; Gao, X. Y.; Zhao, Q. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photonics 2023, 17, 856–864.

    Article  CAS  Google Scholar 

  44. Gao, Z. W.; Wang, Y.; Choy, W. C. H. Buried interface modification in perovskite solar cells: A materials perspective. Adv. Energy Mater. 2022, 12, 2104030.

    Article  CAS  Google Scholar 

  45. Huang, L.; Lou, Y. H.; Wang, Z. K. Buried interface passivation: A key strategy to breakthrough the efficiency of perovskite photovoltaics. Small 2023, 19, 2302585.

    Article  CAS  Google Scholar 

  46. Chen, S. S.; Dai, X. Z.; Xu, S.; Jiao, H. Y.; Zhao, L.; Huang, J. S. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373, 902–907.

    Article  CAS  PubMed  Google Scholar 

  47. Fan, B. J.; Xiong, J.; Zhang, Y. Y.; Gong, C. X.; Li, F.; Meng, X. C.; Hu, X. T.; Yuan, Z. Y.; Wang, F. Y.; Chen, Y. W. A bionic interface to suppress the coffee-ring effect for reliable and flexible perovskite modules with a near-90% yield rate. Adv. Mater. 2022, 34, 2201840.

    Article  CAS  Google Scholar 

  48. Jiang, X. Q.; Zhang, B. Q.; Yang, G. Y.; Zhou, Z. M.; Guo, X.; Zhang, F. S.; Yu, S. T.; Liu, S. W.; Pang, S. P. Molecular dipole engineering of carbonyl additives for efficient and stable perovskite solar cells. Angew. Chem., Int. Ed. 2023, 62, e202302462.

    Article  CAS  Google Scholar 

  49. Yang, L.; Zhou, H.; Duan, Y. W.; Wu, M. Z.; He, K.; Li, Y.; Xu, D. F.; Zou, H.; Yang, S. M.; Fang, Z. M. et al. 25.24%-efficiency FACsPbI3 perovskite solar cells enabled by intermolecular esterification reaction of DL-carnitine hydrochloride. Adv. Mater. 2023, 35, 2211545

    Article  CAS  Google Scholar 

  50. Gong, C.; Zhang, C.; Zhuang, Q. X.; Li, H. Y.; Yang, H.; Chen, J. Z.; Zang, Z. G. Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-Micro Lett. 2023, 15, 17.

    Article  CAS  Google Scholar 

  51. Qin, Z. X.; Chen, Y. T.; Wang, X. T.; Wei, N.; Liu, X. M.; Chen, H. R.; Miao, Y. F.; Zhao, Y. X. Zwitterion-functionalized SnO2 substrate induced sequential deposition of black-phase FAPbI3 with rearranged PbI2 residue. Adv. Mater. 2022, 34, 2203143.

    Article  CAS  Google Scholar 

  52. Fei, C. B.; Li, N. X.; Wang, M. R.; Wang, X. M.; Gu, H. Y.; Chen, B.; Zhang, Z.; Ni, Z. Y.; Jiao, H. Y.; Xu, W. Z. et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 2023, 380, 823–829.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu, P. C.; Gu, S.; Luo, X.; Gao, Y.; Li, S. L.; Zhu, J.; Tan, H. R. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv. Energy Mater. 2020, 10, 1903083.

    Article  CAS  Google Scholar 

  54. Dong, Y.; Shen, W. J.; Dong, W.; Bai, C.; Zhao, J.; Zhou, Y. C.; Huang, F. Z.; Cheng, Y. B.; Zhong, J. Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells. Adv. Energy Mater. 2022, 12, 2200417.

    Article  CAS  Google Scholar 

  55. Zhang, Y. L.; Yu, R. N.; Li, M. H.; He, Z. W.; Dong, Y. M.; Xu, Z. Y.; Wang, R. Y.; Ma, Z. W.; Tan, Z. A. Amphoteric ion bridged buried interface for efficient and stable inverted perovskite solar cells. Adv. Mater. 2024, 36, 2310203.

    Article  CAS  Google Scholar 

  56. Hui, W.; Chao, L. F.; Lu, H.; Xia, F.; Wei, Q.; Su, Z. H.; Niu, T. T.; Tao, L.; Du, B.; Li, D. L. et al. Stabilizing black-phase formamidinium perovskite Formation at room temperature and high humidity. Science 2021, 371, 1359–1364.

    Article  CAS  PubMed  Google Scholar 

  57. Huang, J. Y. GIWAXS-Tools [Online]. GIWAXS-Tools, Version. https://gitee.com/swordshinehjy/giwaxs-script (accessed Aug 3, 2023).

  58. Kim, D. H.; Park, J.; Li, Z.; Yang, M. J.; Park, J. S.; Park, I. J.; Kim, J. Y.; Berry, J. J.; Rumbles, G.; Zhu, K. 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic-oriented attachment. Adv. Mater. 2017, 29, 1606831

    Article  Google Scholar 

  59. Chen, W.; Wang, Y. F.; Pang, G. T.; Koh, C. W.; Djurišić, A. B.; Wu, Y. H.; Tu, B.; Liu, F. Z.; Chen, R.; Woo, H. Y. et al. Conjugated polymer-assisted grain boundary passivation for efficient inverted planar perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1808855.

    Article  Google Scholar 

  60. Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207.

    Article  Google Scholar 

  61. Baumeler, T. P.; Alharbi, E. A.; Kakavelakis, G.; Fish, G. C.; Aldosari, M. T.; Albishi, M. S.; Pfeifer, L.; Carlsen, B. I.; Yum, J. H.; Alharbi, A. S. et al. Surface passivation of FAPbI3-rich perovskite with cesium iodide outperforms bulk incorporation. ACS Energy Lett. 2023, 8, 2456–2462.

    Article  CAS  Google Scholar 

  62. Jang, Y. W.; Lee, S.; Yeom, K. M.; Jeong, K.; Choi, K.; Choi, M.; Noh, J. H. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 2021, 6, 63–71.

    Article  CAS  Google Scholar 

  63. Gao, Y. J.; Feng, X. X.; Chang, J. H.; Long, C. Y.; Ding, Y.; Li, H. Y.; Huang, K. Q.; Liu, B.; Yang, J. L. Surface ion exchange and targeted passivation with cesium fluoride for enhancing the efficiency and stability of perovskite solar cells. Appl. Phys. Lett. 2022, 121, 073902.

    Article  CAS  Google Scholar 

  64. Huang, K. Q.; Feng, X. X.; Li, H. Y.; Long, C. Y.; Liu, B.; Shi, J. J.; Meng, Q. B.; Weber, K.; Duong, T.; Yang, J. L. Manipulating the migration of iodine ions via reverse-biasing for boosting photovoltaic performance of perovskite solar cells. Adv. Sci. 2022, 9, 2204163.

    Article  CAS  Google Scholar 

  65. Ghahremanirad, E.; Almora, O.; Suresh, S.; Drew, A. A.; Chowdhury, T. H.; Uhl, A. R. Beyond protocols: Understanding the electrical behavior of perovskite solar cells by impedance spectroscopy. Adv. Energy Mater. 2023, 13, 2204370.

    Article  CAS  Google Scholar 

  66. Peng, W.; Aranda, C.; Bakr, O. M.; Garcia-Belmonte, G.; Bisquert, J.; Guerrero, A. Quantification of ionic diffusion in lead halide perovskite single crystals. ACS Energy Lett. 2018, 3, 1477–1481.

    Article  CAS  Google Scholar 

  67. Yang, T. H.; Ma, C.; Cai, W. L.; Wang, S. Q.; Wu, Y.; Feng, J. S.; Wu, N.; Li, H. J.; Huang, W. L.; Ding, Z. C. et al. Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule 2023, 7, 574–586.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (No. U23A20138) and the National Key Research and Development Program of China (No. 2022YFB3803300). This work was supported by the State Key Laboratory of Powder Metallurgy, Central South University, China and was also supported in part by the High-Performance Computing Center of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Feng, E., Feng, X. et al. Bridging buried interface enable 24.67%-efficiency doctor-bladed perovskite solar cells in ambient condition. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6639-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6639-9

Keywords

Navigation