Skip to main content
Log in

NH4PF6 assisted buried interface defect passivation for planar perovskite solar cells with efficiency exceeding 21%

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The buried interface defects severely affect the further enhancements of efficiency and stability of SnO2-based planar perovskite solar cells (PSCs). To well tackle this problem, we propose a passivation strategy employing NH4PF6 to modify the buried interface of perovskite layer ((FAPbI3)0.85(MAPbBr3)0.15 composition) in planar PSCs. After introducing NH4PF6, the oxygen defects on the surface of SnO2 film are greatly restricted due to the coordinate interaction between fluorine atoms (F) in PF6 and undercoordinated Sn4+. Meanwhile, the hydrogen bonding interaction (N–H⋯I) between NH4PF6 and PbI2 can passivate the non-radiative charge recombination sites, significantly optimizing the quality of perovskite film, as well as the charge transfer process at the SnO2/perovskite interface. As a result, the NH4PF6-modified PSC obtains a champion power conversion efficiency (PCE) of 21.11% superior to the reference device (18.46%), and the device with an active area of 1 cm2 achieves a PCE as high as 17.38%. Furthermore, the unencapsulated NH4PF6-modified PSCs show good humidity stability and retain about 80% of the initial PCE after 1080 h aging at the relative humidity (RH) of 35% ± 5%.

Graphical abstract

摘要

埋藏界面缺陷严重影响了基于 SnO2 的平面钙钛矿太阳能电池效率和稳定性的提高。为了解决这一问题, 我们提出了一种采用 NH4PF6 修饰平面钙钛矿太阳能电池中钙钛矿层((FAPbI3)0.85(MAPbBr3)0.15 组成)的埋界面的钝化策略。引入NH4PF6后, 由于 PF6– 中的氟原子(F)与欠配位的 Sn4+ 之间的相互作用, 大大限制了 SnO2 薄膜表面的氧缺陷。同时, NH4PF6 与 PbI2 之间的氢键相互作用(N–H⋯I)可以钝化非辐射电荷重组位点, 显著提升了钙钛矿膜的质量, 也改善了 SnO2/钙钛矿界面的电荷转移过程。结果表明, 相比参考器件的18.46%效率, 经过 NH4PF6 修饰的钙钛矿太阳能电池获得了 21.11% 的功率转换效率, 并且在 1 cm2 大面积器件上也获得了 17.38% 的效率。此外, 未封装的 NH4PF6 修饰的钙钛矿太阳能电池具有良好的湿度稳定性, 在相对湿度为 35% ± 5% 的条件下老化 1080 h 后, 仍保持在初始效率的80%左右。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dong QS, Shi YT, Zhang CY, Wu YK, Wang LD. Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy. 2017;40:336. https://doi.org/10.1016/j.nanoen.2017.08.041.

    Article  CAS  Google Scholar 

  2. Dagar JD, Castro-Hermosa S, Lucarelli G, Cacialli F, Brown TM. Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers. Nano Energy. 2018;49:290. https://doi.org/10.1016/j.nanoen.2018.04.027.

    Article  CAS  Google Scholar 

  3. Jiang Q, Zhang XW, You JB. SnO2: a wonderful electron transport layer for perovskite solar cells. Small. 2018;14:e1801154. https://doi.org/10.1002/smll.201801154.

    Article  CAS  Google Scholar 

  4. Huang KQ, Peng YY, Gao YX, Shi J, Li HY, Mo XD, Huang H, Gao YL, Ding LM, Yang JL. High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv Energy Mater. 2019;9(44):1901419. https://doi.org/10.1002/aenm.201901419.

    Article  CAS  Google Scholar 

  5. Jiang Q, Zhao Y, Zhang XW, Yang XL, Chen Y, Chu ZM, Ye Q, Li X, Yin ZG, You JB. Surface passivation of perovskite film for efficient solar cells. Nat Photonics. 2019;13(7):460. https://doi.org/10.1038/s41566-019-0398-2.

    Article  CAS  Google Scholar 

  6. Min H, Kim M, Lee SU, Kim H, Kim G, Choi K, Lee JH, Seok SI. Efficient, stable solar cells by using inherent bandgap of alpha-phase formamidinium lead iodide. Science. 2019;366(6466):749. https://doi.org/10.1126/science.aay7044.

    Article  CAS  Google Scholar 

  7. Wang JK, Datta K, Weijtens CHL, Wienk MM, Janssen RAJ. Insights into fullerene passivation of SnO2 electron transport layers in perovskite solar cells. Adv Funct Mater. 2019;29(46):1905883. https://doi.org/10.1002/adfm.201905883.

    Article  CAS  Google Scholar 

  8. Yang Z, Zhong M, Liang Y, Yang L, Liu X, Li Q, Zhang J, Xu D. SnO2-C60 pyrrolidine tris-acid (CPTA) as the electron transport layer for highly efficient and stable Planar Sn-based perovskite solar cells. Adv Funct Mater. 2019;29(42):1903621. https://doi.org/10.1002/adfm.201903621.

    Article  CAS  Google Scholar 

  9. Awni RA, Song ZN, Chen C, Li CW, Wang CL, Razooqi MA, Chen L, Wang XM, Ellingson RJ, Li JV. Influence of charge transport layers on capacitance measured in halide perovskite solar cells. Joule. 2020;4(3):644. https://doi.org/10.1016/j.joule.2020.01.012.

    Article  CAS  Google Scholar 

  10. Xu ZH, Zhou XM, Li XH, Zhang PT. Polymer-regulated SnO2 composites electron transport layer for high-efficiency n-i-p Perovskite solar cells. Sol RRL. 2022;6(8):2200092. https://doi.org/10.1002/solr.202200092.

    Article  CAS  Google Scholar 

  11. Yang L, Feng J, Liu Z, Duan Y, Zhan S, Yang S, He K, Li Y, Zhou Y, Yuan N. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv Mater. 2022;34(24):e2201681. https://doi.org/10.1002/adma.202201681.

    Article  CAS  Google Scholar 

  12. Zhang J, Fu J, Chen Q, Ma H, Jiang Z, Zhang Z, Zhou Y, Song B. 3,5-Difluorophenylboronic acid-modified SnO2 as ETLs for perovskite solar cells: PCE>22.3%, T82>3000h. Chem Eng J. 2022;433(3):133744. https://doi.org/10.1016/j.cej.2021.133744.

    Article  CAS  Google Scholar 

  13. Zheng Z, Li F, Gong J, Ma Y, Gu J, Liu X, Chen S, Liu M. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv Mater. 2022;34(21):e2109879. https://doi.org/10.1002/adma.202109879.

    Article  CAS  Google Scholar 

  14. Zhou J, Lyu M, Zhu J, Li G, Li Y, Jin S, Song J, Niu H, Xu J, Zhou R. SnO2 quantum dot-modified mesoporous TiO2 electron transport layer for efficient and stable perovskite solar cells. ACS Appl Energy Mater. 2022;5(3):3052. https://doi.org/10.1021/acsaem.1c03681.

    Article  CAS  Google Scholar 

  15. Park SY, Zhu K. Advances in SnO2 for efficient and stable n-i-p Perovskite solar cells. Adv Mater. 2022;34(27):e2110438. https://doi.org/10.1002/adma.202110438.

    Article  CAS  Google Scholar 

  16. Wu DH, Ai ZH, Li S, Chen JJ, Zhao Y, Ma TS, Wang HY, Wang CL, Li XF. Efficient flexible perovskite solar cells with reduced hysteresis employing cobalt nitrate treated SnO2. Sol RRL. 2022;6(7):2200210. https://doi.org/10.1002/solr.202200210.

    Article  CAS  Google Scholar 

  17. Xiong Z, Chen X, Zhang B, Odunmbaku GO, Ou Z, Guo B, Yang K, Kan Z, Lu S, Chen S. Simultaneous interfacial modification and crystallization control by Biguanide hydrochloride for stable perovskite solar cells with PCE of 244. Adv Mater. 2022;34(8):e2106118. https://doi.org/10.1002/adma.202106118.

    Article  CAS  Google Scholar 

  18. Zhu X, Yang S, Cao Y, Duan L, Du M, Feng J, Jiao Y, Jiang X, Sun Y, Wang H. Ionic-liquid-perovskite capping layer for stable 24.33%-efficient solar cell. Adv Energy Mater. 2021;12(6):2103491. https://doi.org/10.1002/aenm.202103491.

    Article  CAS  Google Scholar 

  19. Bi H, Guo Y, Guo MN, Ding C, Hayase S, Mou T, Shen Q, Han GY, Hou WJ. Highly efficient and low hysteresis methylammonium-free perovskite solar cells based on multifunctional oteracil potassium interface modification. Chem Eng J. 2022;439(1):135671. https://doi.org/10.1016/j.cej.2022.135671.

    Article  CAS  Google Scholar 

  20. Chen Q, Peng C, Du L, Hou T, Yu W, Chen D, Shu H, Huang D, Zhou X, Zhang J. Synergy of mesoporous SnO2 and RbF modification for high-efficiency and stable perovskite solar cells. J Energy Chem. 2022;66:250. https://doi.org/10.1016/j.jechem.2021.08.014.

    Article  CAS  Google Scholar 

  21. Kim M, Jeong J, Lu H, Lee TK, Eickemeyer FT, Liu Y, Choi IW, Choi SJ, Jo Y, Kim HB. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science. 2022;375(6578):302. https://doi.org/10.1126/science.abh1885.

    Article  CAS  Google Scholar 

  22. Ding X, Wang H, Chen C, Li H, Tian Y, Li Q, Wu C, Ding L, Yang X, Cheng M. Passivation functionalized phenothiazine-based hole transport material for highly efficient perovskite solar cell with efficiency exceeding 22%. Chem Eng J. 2021;410(15):128328. https://doi.org/10.1016/j.cej.2020.128328.

    Article  CAS  Google Scholar 

  23. Miao YW, Zheng MM, Wang HX, Chen C, Ding XD, Wu C, Wang BY, Zhai MD, Yang XC, Cheng M. In-situ secondary annealing treatment assisted effective surface passivation of shallow defects for efficient perovskite solar cells. J Power Sources. 2021;492(30):229621. https://doi.org/10.1016/j.jpowsour.2021.229621.

    Article  CAS  Google Scholar 

  24. Abuhelaiqa M, Shibayama N, Gao XX, Kanda H, Nazeeruddin MK. SnO2/TiO2 electron transporting bilayers: a route to light stable perovskite solar cells. ACS Appl Energy Mater. 2021;4(4):3424. https://doi.org/10.1021/acsaem.0c03185.

    Article  CAS  Google Scholar 

  25. Zhang S, Si H, Fan W, Shi M, Li M, Xu C, Zhang Z, Liao Q, Sattar A, Kang Z. Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew Chem Int Ed. 2020;59(28):11573. https://doi.org/10.1002/anie.202003502.

    Article  CAS  Google Scholar 

  26. Altinkaya C, Aydin E, Ugur E, Isikgor FH, Subbiah AS, De Bastiani M, Liu J, Babayigit A, Allen TG, Laquai F. Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells. Adv Mater. 2021;33(15):e2005504. https://doi.org/10.1002/adma.202005504.

    Article  CAS  Google Scholar 

  27. Lou Q, Han Y, Liu C, Zheng K, Zhang J, Chen X, Du Q, Chen C, Ge Z. π-conjugated small molecules modified SnO2 layer for perovskite solar cells with over 23% efficiency. Adv Energy Mater. 2021;11(39):2101416. https://doi.org/10.1002/aenm.202101416.

    Article  CAS  Google Scholar 

  28. Wang Z, Zhu X, Feng J, Wang C, Zhang C, Ren X, Priya S, Liu SF, Yang D. Antisolvent- and annealing-free deposition for highly stable efficient perovskite solar cells via modified ZnO. Adv Sci. 2021;8(13):2002860. https://doi.org/10.1002/advs.202002860.

    Article  CAS  Google Scholar 

  29. Wu PF, Wang SR, Li XG, Zhang F. Advances in SnO2-based perovskite solar cells: from preparation to photovoltaic applications. J Mater Chem A. 2021;9(35):19554. https://doi.org/10.1039/D1TA04130D.

    Article  CAS  Google Scholar 

  30. Xiong Z, Lan L, Wang Y, Lu C, Qin S, Chen S, Zhou L, Zhu C, Li S, Meng L. Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23%. ACS Energy Lett. 2021;6(11):3824. https://doi.org/10.1021/acsenergylett.1c01763.

    Article  CAS  Google Scholar 

  31. Guo Z, Jena AK, Takei I, Kim GM, Kamarudin MA, Sanehira Y, Ishii A, Numata Y, Hayase S, Miyasaka T. VOC over 1.4 V for amorphous tin-oxide-based dopant-free CsPbI2Br perovskite solar cells. J Am Chem Soc. 2020;142(21):9725. https://doi.org/10.1021/jacs.0c02227.

    Article  CAS  Google Scholar 

  32. Raoui Y, Ez-Zahraouy H, Kazim S, Ahmad S. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: mechanistic insights. J Energy Chem. 2021;54:822. https://doi.org/10.1016/j.jechem.2020.06.030.

    Article  CAS  Google Scholar 

  33. Tong G, Ono LK, Liu Y, Zhang H, Bu T, Qi Y. Up-Scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules. Nano-Micro Lett. 2021;13(1):155. https://doi.org/10.1007/s40820-021-00675-7.

    Article  CAS  Google Scholar 

  34. Wang PY, Chen BB, Li RJ, Wang SL, Ren NY, Li YC, Mazumdar S, Shi BA, Zhao Y, Zhang XD. Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V. ACS Energy Lett. 2021;6(6):2121. https://doi.org/10.1021/acsenergylett.1c00443.

    Article  CAS  Google Scholar 

  35. Yoo JJ, Seo G, Chua MR, Park TG, Lu Y, Rotermund F, Kim YK, Moon CS, Jeon NJ, Correa-Baena JP. Efficient perovskite solar cells via improved carrier management. Nature. 2021;590(7847):587. https://doi.org/10.1038/s41586-021-03285-w.

    Article  CAS  Google Scholar 

  36. Dong Q, Zhu C, Chen M, Jiang C, Guo J, Feng Y, Dai Z, Yadavalli SK, Hu M, Cao X. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat Commun. 2021;12(1):973. https://doi.org/10.1038/s41467-021-21292-3.

    Article  CAS  Google Scholar 

  37. Hang P, Xie J, Kan C, Li B, Zhang Y, Gao P, Yang D, Yu X. Stabilizing fullerene for burn-in-Free and stable perovskite solar cells under ultraviolet preconditioning and light soaking. Adv Mater. 2021;33(10):e2006910. https://doi.org/10.1002/adma.202006910.

    Article  CAS  Google Scholar 

  38. Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope MA, Eickemeyer FT, Kim M. Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells. Nature. 2021;592(7854):381. https://doi.org/10.1038/s41586-021-03406-5.

    Article  CAS  Google Scholar 

  39. Ming Y, Zhu Y, Chen Y, Jin B, Duan C, Liang Z, Zhao L, Wang S, Dong B, Li H. Beta-Alanine-Anchored SnO2 Inducing facet orientation for high-efficiency perovskite solar cells. ACS Appl Mater Interfaces. 2021;13(48):57163. https://doi.org/10.1002/adma.202100791.

    Article  CAS  Google Scholar 

  40. Ma K, Atapattu HR, Zhao Q, Gao Y, Finkenauer BP, Wang K, Chen K, Park SM, Coffey AH, Zhu C. Multifunctional conjugated ligand engineering for stable and efficient perovskite solar cells. Adv Mater. 2021;33(32):e2100791. https://doi.org/10.1002/adma.202100791.

    Article  CAS  Google Scholar 

  41. Huang SK, Wang YC, Ke WC, Kao YT, She NZ, Li JX, Luo CW, Yabushita A, Wang DY, Chang YJ. Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells. J Mater Chem A. 2020;8(44):23607. https://doi.org/10.1039/d0ta08752a.

    Article  CAS  Google Scholar 

  42. Liu ZH, Qiu LB, Ono LK, He SS, Hu ZH, Jiang MW, Tong GQ, Wu ZF, Jiang Y, Son DY. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat Energy. 2020;5(8):596. https://doi.org/10.1038/s41560-020-0653-2.

    Article  CAS  Google Scholar 

  43. Zhu PC, Gu S, Luo X, Gao Y, Li SL, Zhu J, Tan HR. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Energy Mater. 2020;10(3):1903083. https://doi.org/10.1002/aenm.201903083.

    Article  CAS  Google Scholar 

  44. Bi H, Zuo X, Liu B, He D, Bai L, Wang W, Li X, Xiao Z, Sun K, Song Q. Multifunctional organic ammonium salt-modified SnO2 nanoparticles toward efficient and stable planar perovskite solar cells. J Mater Chem A. 2021;9(7):3940. https://doi.org/10.1039/d0ta12612h.

    Article  CAS  Google Scholar 

  45. Yuan RH, Cai B, Lv YH, Gao X, Gu JW, Fan ZH, Liu XH, Yang C, Liu MZ, Zhang WH. Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells. Energy Environ Sci. 2021;14:5074. https://doi.org/10.1039/d1ee01519b.

    Article  CAS  Google Scholar 

  46. Zheng ZH, Li F, Gong J, Ma YY, Gu JW, Liu XC, Chen SH, Liu MZ. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv Mater. 2022;34(21):2109879. https://doi.org/10.1002/adma.202109879.

    Article  CAS  Google Scholar 

  47. Liu AP, Chen ZX, Wang ZH, Fang L, Huang YZ. Two-dimensional Mxenes-Ag micro-nano mixed film for surface-enhanced Raman research. Chin J Rare Met. 2022;46(8):989. https://doi.org/10.13373/j.cnki.cjrm.XY22060028.

    Article  Google Scholar 

  48. Bi H, Liu BB, He DM, Bai L, Wang WQ, Zang ZG, Chen JZ. Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability. Chem Eng J. 2021;418:129375. https://doi.org/10.1016/j.cej.2021.129375.

    Article  CAS  Google Scholar 

  49. Jiang S, Wu CC, Li F, Zhang YQ, Zhang ZH, Zhang QH, Chen ZJ, Qu B, Xiao LX, Jiang ML. Machine learning (ML)-assisted optimization doping of KI in MAPbI3 solar cells. Rare Met. 2021;40(7):1698. https://doi.org/10.1007/s12598-020-01579-y.

    Article  CAS  Google Scholar 

  50. Xu XP, Li SY, Li Y, Peng Q. Recent progress in organic hole-transporting materials with 4-anisylamino-based end caps for efficient perovskite solar cells. Rare Met. 2021;40(7):1669. https://doi.org/10.1007/s12598-020-01617-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22179053, 22279046 and 21905119), the Natural Science Excellent Youth Foundation of Jiangsu Provincial (No. BK20220112) and the Six-Peak Top Talents in Jiangsu province (No. XNY066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-Xin Wang or Cheng Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1577 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, XD., Zhou, XW., Meng, JW. et al. NH4PF6 assisted buried interface defect passivation for planar perovskite solar cells with efficiency exceeding 21%. Rare Met. 42, 3399–3409 (2023). https://doi.org/10.1007/s12598-023-02394-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02394-x

Keywords

Navigation