Skip to main content
Log in

Synergistic effect of homojunction and Ohmic junctions in CdS boosting spatial charge separation for U(VI) photoreduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photo-excited holes usually migrate to the surface of the catalyst and rapidly recombine with electrons, reducing the photocatalytic reduction efficiency of uranium(VI) (U(VI)) in radioactive wastewater. Consequently, we employed a straightforward synthesis technique to meticulously shape and manipulate the morphology of CdS to precisely construct CdS-Ni dandelion-like composites with different aspect ratios. Briefly, the introduction of crystal facet homojunction with Ohmic contacts in this unique morphology siqnificantly improves the photocatalytic efficiency. Temperature-dependent photoluminescence spectroscopy (TD-PL) verifies that the composite material positively effects on the dissociation of excitons. Within 30 min, CdS(002)/(102)/Ni-4 removed 98% of the uranium content in solution and showed a rather high apparent rate constant (0.114 min−1), which was 4.8 times higher than that of CdS nanospheres (NSs) (0.024 min−1) and 3.7 times higher than that of CdS nanorods (NRs) (0.031 min−1). This is much higher the most reported photocatalysts for U(VI) reduction. Even after 5 consecutive cycles, the photocatalytic efficiency only decreased by 7%. This offers a fresh perspective on constructing a new perspective for building a green, efficient, and multi mechanism collaborative catalytic system to remediate environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Z. J.; Huang, Z. W.; Guo, W. L.; Wang, L.; Zheng, L. R.; Chai, Z. F.; Shi, W. Q. Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ. Sci. Technol. 2017, 51, 5666–5674.

    Article  CAS  PubMed  Google Scholar 

  2. Li, Z. F.; Zhang, Z. B.; Zhu, X.; Meng, C.; Dong, Z. M.; Xiao, S. T.; Wang, Y. C.; Wang, Y. Q.; Cao, X. H.; Liu, Y. H. Exciton dissociation and transfer behavior and surface reaction mechanism in donor-acceptor organic semiconductor photocatalytic separation of uranium. Appl. Catal. B: Environ. 2023, 332, 122751.

    Article  CAS  Google Scholar 

  3. Ma, M. Y.; Ye, Z. X.; Zhang, J.; Wang, Y. B.; Ning, S. Y.; Yin, X. B.; Fujita, T.; Chen, Y. L.; Wu, H. Y.; Wang, X. P. Synthesis and fabrication of segregative and durable MnO2@chitosan composite aerogel beads for uranium(VI) removal from wastewater. Water Res. 2023, 247, 120819.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, B.; He, S.; Feng, W. H.; Zhang, L. L.; Huang, X. Y.; Wang, K. Q.; Zhang, S. Y.; Liu, P. Rational design and facile in situ coupling non-noble metal Cd nanoparticles and CdS nanorods for efficient visible-light-driven photocatalytic H2 eoolutinn. Appl. Catal. B: Environ. 2018, 236, 233–239.

    Article  CAS  Google Scholar 

  5. Peng, Z. Y.; Su, Y. L.; Siaj, M. Encapsulation of tin oxide layers on gold nanoparticles decorated one-dimensional CdS nanoarrays for pure Z-scheme photoanodes towards solar hydrogen evolution. Appl. Catal. B: Environ. 2023, 330, 122614.

    Article  CAS  Google Scholar 

  6. Zhang, X. L.; Wu, F.; Li, G. C.; Wang, L.; Huang, J. F.; Meng, A. L.; Li, Z. J. Modulating electronic structure and sulfur p-band center by anchoring amorphous Ni@NiSx on crystalline CdS for expediting photocatalytic H2 evolution. Appl. Catal. B: Environ. 2024, 342, 123398.

    Article  CAS  Google Scholar 

  7. Movlarooy, T. Study of quantum confinement effects in ZnO nanostructures. Mater. Res. Express 2018, 5, 035032.

    Article  Google Scholar 

  8. Kim, D.; Lee, Y. K.; Lee, D.; Kim, W. D.; Bae, W. K.; Lee, D. C. Colloidal dual-diameter and core-position-controlled core/shell cadmium chalcogenide nanorods. ACS Nano 2017, 11, 12461–12472.

    Article  CAS  PubMed  Google Scholar 

  9. Wu, K. F.; Rodríguez-Córdoba, W.; Lian, T. Q. Exciton localization and dissociation dynamics in CdS and CdS-Pt quantum confined nanorods: Effect of nonuniform rod diameters. J. Phys. Chem. B 2014, 118, 14062–14069.

    Article  CAS  PubMed  Google Scholar 

  10. Dong, Z. M.; Hu, S. X.; Li, Z. F.; Xu, J. H.; Gao, D. L.; Yu, F. T.; Li, X. Y.; Cao, X. H.; Wang, Y. Q.; Zhang, Z. B. et al. Biomimetic photocatalytic system designed by spatially separated cocatalysts on Z-scheme heterojunction with identified charge-transfer processes for boosting removal of U(VI). Small 2023, 19, 2300003.

    Article  CAS  Google Scholar 

  11. Jin, J.; Yu, J. G.; Liu, G.; Wong, P. K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J. Mater. Chem. A 2013, 1, 10927–10934.

    Article  CAS  Google Scholar 

  12. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, R.; Shen, J.; Sun, K. H.; Tang, H.; Liu, Q. Q. Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction. Appl. Surf. Sci. 2019, 493, 1142–1149.

    Article  CAS  Google Scholar 

  14. Smith, A. M.; Nie, S. M. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, A. Y.; Wang, W. Y.; Chen, J. J.; Liu, C.; Li, Q. X.; Zhang, X.; Li, W. W.; Si, Y.; Yu, H. Q. Epitaxial facet junctions on TiO2 single crystals for efficient photocatalytic water splitting. Energy Environ. Sci. 2018, 11, 1444–1448.

    Article  CAS  Google Scholar 

  16. Hu, X. L.; Lu, S. C.; Tian, J.; Wei, N.; Song, X. J.; Wang, X. Z.; Cui, H. Z. The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production. Appl. Catal. B: Environ. 2019, 241, 329–337.

    Article  CAS  Google Scholar 

  17. De Corrado, J. M.; Fernando, J. F. S.; Shorten, M. P.; Poad, B. L. J.; Blanksby, S. J.; Waclawik, E. R. ZnO Colloid crystal facet-type determines both Au photodeposition and photocatalytic activity. ACS Appl. Nano Mater. 2019, 2, 7856–7869.

    Article  CAS  Google Scholar 

  18. Zhang, J. J.; Zhang, Q. N.; Yue, Y. W.; Zhou, Y. G.; Shen, J. N.; Zhang, Z. Z.; Wang, X. X. The effect of excitation wavelength on the photodeposition of Pt on polyhedron BiVO4 with exposing {010} and {110} facets for photocatalytic performance. Catal. Commun. 2019, 123, 100–104.

    Article  CAS  Google Scholar 

  19. Ma, J. Q.; Guo, X. H.; Zhang, Y. Y.; Ge, H. G. Catalytic performance of TiO2@Ag composites prepared by modified photodeposition method. Chem. Enr. J. 2014, 258, 247–253.

    Article  CAS  Google Scholar 

  20. Peng, S. N.; Jiang, Y. H.; Wang, Z. M.; Luo, X. D.; Lu, J. L.; Han, L.; Ding, Y. H. Introducing a porous container and a defect-rich cocatalyst coating over CdS nanoparticles for promotion of photocatalytic hydrogen evolution. Catal. Lett. 2020, 150, 3533–3541.

    Article  CAS  Google Scholar 

  21. Cheng, C. C.; Zhang, J. W.; Zeng, R. Y.; Xing, F. S.; Huang, C. J. Schottky barrier tuning via surface plasmon and vacancies for enhanced photocatalytic H2 evolution in seawater. Appl. Catal. B: Environ. 2022, 310, 121321.

    Article  CAS  Google Scholar 

  22. Li, Z.; Huang, F.; Xu, Y. F.; Yan, A. H.; Dong, H. M.; Xiong, X.; Zhao, X. H. Electron-extracting system with enhanced photocatalytic hydrogen production performance: Synergistic utilization of Z-scheme and Ohmic heterojunctions. Chem. Eng. J. 2022, 429, 132476.

    Article  CAS  Google Scholar 

  23. Wang, Z. Q.; Qi, Z. L.; Fan, X. J.; Leung, D. Y. C.; Long, J. L.; Zhang, Z. Z.; Miao, T. F.; Meng, S. G.; Chen, S. F.; Fu, X. L. Intimately contacted Ni2P on CdS nanorods for highly efficient photocatalytic H2 evolution: New phosphidation route and the interfacial separation mechanism of charge carriers. Appl. Catal. B: Environ. 2021, 281, 119443.

    Article  CAS  Google Scholar 

  24. Fang, X.; Chen, L.; Cheng, H. R.; Bian, X. Q.; Sun, W. H.; Ding, K. N.; Xia, X. H.; Chen, X.; Zhu, J. F.; Zheng, Y. H. Homojunction and ohmic contact coexisting carbon nitride for efficient photocatalytic hydrogen evolution. Nano Res. 2023, 16, 8782–8792.

    Article  CAS  Google Scholar 

  25. Wang, S. M.; Guan, Y.; Lu, L.; Shi, Z.; Yan, S. C.; Zou, Z. G. Effective separation and transfer of carriers into the redox sites on Ta3N5/Bi photocatalyst for promoting conversion of CO2 into CH4. Appl. Catal. B: Environ. 2018, 224, 10–16.

    Article  CAS  Google Scholar 

  26. Zhang, Z. B.; Li, Z. F.; Dong, Z. M.; Yu, F. T.; Wang, Y. C.; Wang, Y. Q.; Cao, X. H.; Liu, Y. H.; Liu, Y. H. Synergy of photocatalytic reduction and adsorption for boosting uranium removal with PMo12/UiO-66 heterojunction. Chin. Chem. Lett. 2022, 33, 3577–3580.

    Article  CAS  Google Scholar 

  27. Pan, J. Q.; Li, H. L.; Li, S.; Ou, W.; Liu, Y. Y.; Wang, J. J.; Song, C. S.; Zheng, Y. Y.; Li, C. R. The enhanced photocatalytic hydrogen production of nickel-cobalt bimetals sulfide synergistic modified CdS nanorods with active facets. Renew. Energy 2020, 156, 469–477.

    Article  CAS  Google Scholar 

  28. Qiao, S. S.; Feng, C.; Guo, Y.; Chen, T. X.; Akram, N.; Zhang, Y.; Wang, W.; Yue, F.; Wang, J. D. CdS nanoparticles modified Ni@NiO spheres as photocatalyst for oxygen production in water oxidation system and hydrogen production in water reduction system. Chem. Eng. J. 2020, 395, 125068.

    Article  CAS  Google Scholar 

  29. Li, Y. X.; Hu, Y. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C 2009, 113, 9352–9358.

    Article  CAS  Google Scholar 

  30. Yang, H.; Jin, Z. L.; Fan, K.; Liu, D. D.; Lu, G. X. The roles of Ni nanoparticles over CdS nanorods for improved photocatalytic stability and activity. Superlattices Microstruct. 2017, 111, 687–695.

    Article  CAS  Google Scholar 

  31. Zhao, G. X.; Sun, Y. B.; Zhou, W.; Wang, X. K.; Chang, K.; Liu, G. G.; Liu, H. M.; Kako, T.; Ye, J. H. Superior photocatalytic H2 production with cocatalytic Co/Ni species anchored on sulfide semiconductor. Adv. Mater. 2017, 29, 1703258.

    Article  Google Scholar 

  32. Zhong, J.; Shen, Y. L.; Zhu, P.; Yao, S.; An, C. H. Size-effect on Ni electrocatalyst: The case of electrochemical benzyl alcohol oxidation. Nano Res. 2023, 16, 202–208.

    Article  CAS  Google Scholar 

  33. Zhao, Y.; Shao, C. T.; Lin, Z. X.; Jiang, S. J.; Song, S. Q. Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small 2020, 16, 2000944.

    Article  CAS  Google Scholar 

  34. Deng, P. S.; Wang, P.; Wang, X. F.; Chen, F.; Yu, H. G. Oxygen-contained amorphous MoSx cocatalyst by one-step photodeposition to enhance H-adsorption affinity for efficient photocatalytic H2 generation. Nano Res. 2023, 16, 8977–8986.

    Article  CAS  Google Scholar 

  35. She, H. D.; Sun, Y. D.; Li, S. P.; Huang, J. W.; Wang, L.; Zhu, G. Q.; Wang, Q. Z. Synthesis of non-noble metal nickel doped sulfide solid solution for improved photocatalytic performance. Appl. Catal. B: Environ. 2019, 245, 439–447.

    Article  CAS  Google Scholar 

  36. Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.

    Article  CAS  PubMed  Google Scholar 

  37. Zheng, S. Y.; Peng, S. N.; Wang, Z. M.; Huang, J. T.; Luo, X. D.; Han, L.; Li, X. B. Schottky- structured 0D/2D composites via electrostatic self-assembly for efficient photocatalytic hydrogen evolution. Ceram. Int. 2021, 47, 28304–28311.

    Article  CAS  Google Scholar 

  38. Zhang, W. J.; Deng, Z. Z.; Deng, J. Y.; Au, C. T.; Liao, Y. F.; Yang, H.; Liu, Q. Q. Regulating the exciton binding energy of covalent triazine frameworks for enhancing photocatalysis. J. Mater. Chem. A 2022, 10, 22419–22427.

    Article  CAS  Google Scholar 

  39. Simon, T.; Carlson, M. T.; Stolarczyk, J. K.; Feldmann, J. Electron transfer rate vs recombination losses in photocatalytic H2 generation on Pt-decorated CdS nanorods. ACS Energy Lett. 2016, 1, 1137–1142.

    Article  CAS  Google Scholar 

  40. Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.

    Article  CAS  Google Scholar 

  41. Zhang, H. Z.; Dong, Y. M.; Zhao, S.; Wang, G. L.; Jiang, P. P.; Zhong, J.; Zhu, Y. F. Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 261, 118233.

    Article  CAS  Google Scholar 

  42. Kim, Y. K.; Lee, S.; Ryu, J.; Park, H. Solar conversion of seawater uranium(VI) using TiO2 electrodes. Appl. Catal. B: Environ. 2015, 163, 584–590.

    Article  CAS  Google Scholar 

  43. Cheng, L. L.; Zhang, S. F.; Wang, Y. J.; Ding, G. J.; Jiao, Z. Ternary P25-graphene-Fe3O4 nanocomposite as a magnetically recyclable hybrid for photodegradation of dyes. Mater. Res. Bull. 2011, 73, 77–83.

    Article  Google Scholar 

  44. Jin, S.; Shao, W.; Luo, X.; Wang, H.; Sun, X. S.; He, X.; Zhang, X. D.; Xie, Y. Spatial band separation in a surface doped heterolayered structure for realizing efficient singlet oxygen generation. Adv. Mater. 2022, 34, 2206516.

    Article  CAS  Google Scholar 

  45. Liu, C.; Hsu, P. C.; Xie, J.; Zhao, J.; Wu, T.; Wang, H. T.; Liu, W.; Zhang, J. S.; Chu, S.; Cui, Y. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy 2017, 2, 17007.

    Article  CAS  Google Scholar 

  46. Pointurier, F.; Marie, O. Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uranium compounds in micrometer-size particles. J. Raman Spectrosc. 2013, 44, 1753–1759.

    Article  CAS  Google Scholar 

  47. Li, N.; Han, L.; Zhang, H. N.; Huang, J. T.; Luo, X. D.; Li, X. B.; Wang, Y. H.; Qian, W. Q.; Yang, Y. Polydopamine nanolayer assisted internal photo-deposition of CdS nanocrystals for stable cosensitized photoanode. Nano Res. 2022, 15, 8836–8845.

    Article  CAS  Google Scholar 

  48. Chen, H. H.; Leng, W. H.; Xu, Y. M. Enhanced visible-light photoactivity of CuWO4 through a surface-deposited CuO. J. Phys. Chem. C 2014, 118, 9982–9989.

    Article  CAS  Google Scholar 

  49. Mu, Y. F.; Zhang, W.; Dong, G. X.; Su, K.; Zhang, M.; Lu, T. B. Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction. Small 2020, 16, 2002140.

    Article  CAS  Google Scholar 

  50. Guo, H. W.; Wan, S. P.; Wang, Y. N.; Ma, W. H.; Zhong, Q.; Ding, J. Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer. Chem. Eng. J. 2021, 412, 128646.

    Article  CAS  Google Scholar 

  51. Gao, J. F.; Zhang, F. D.; Xue, H. Q.; Zhang, L. H.; Peng, Y.; Li, X. L.; Gao, Y. Q.; Li, N.; Lei, G. In-sttu synthesis of novel ternary CdS/PdAg/g-C3N4 hybrid photocatalyst with significantly enhanced hydrogen production activity and catalytic mechanism exploration. Appl. Catal. B: Environ. 2021, 281, 119509.

    Article  CAS  Google Scholar 

  52. Wang, J. F.; Wang, P. F.; Hou, J.; Qian, J.; Wang, C.; Ao, Y. H. In situ surface engineering of ultrafine Ni2P nanoparticles on cadmium sulfide for robust hydrogen evolution. Catal. Sci. Technol. 2018, 8, 5406–5415.

    Article  CAS  Google Scholar 

  53. Qi, Z.; Chen, J. B.; Li, Q.; Wang, N.; Carabineiro, S. A. C.; Lv, K. L. Increasing the photocatalytic hydrogen generation activity of CdS nanorods by introducing interfacial and polarization electric fields. Small 2023, 19, 2303318.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22066003, U2167223, 22206024, 22076022, and 22006014), and the Natural Science Foundation of Jiangxi province (Nos. 20224ACB203005 and 20232BAB213034). This work was carried out at Shanxi Supercomputing Center of China, and the calculations were performed on TianHe-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunhai Liu, Zhibin Zhang or Guoping Yang.

Electronic Supplementary Material

12274_2024_6637_MOESM1_ESM.pdf

Synergistic effect of homojunction and Ohmic junctions in CdS boosting spatial charge separation for U(VI) photoreduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, H., Dong, Z., Li, Z. et al. Synergistic effect of homojunction and Ohmic junctions in CdS boosting spatial charge separation for U(VI) photoreduction. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6637-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6637-y

Keywords

Navigation