Skip to main content
Log in

Coordination-environment regulation of atomic Co-Mn dual-sites for efficient oxygen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Precisely designing atomic metal-nitrogen-carbon (M-N-C) catalysts with asymmetric diatomic configurations and studying their structure–activity relationships for oxygen reduction reaction (ORR) are important for zinc-air batteries (ZABs). Herein, a dual-atomic-site catalyst (DASC) with CoN3S-MnN2S2 configuration was prepared for the cathodes of ZABs. Compared with Co-N-C (Mn-free) and CoMn-N-C (S-free doping), CoMn-N/S-C exhibits excellent half-wave potential (0.883 V) and turnover frequency (1.54 e·s−1·site−1), surpassing most of the reported state-of-the-art Pt-free ORR catalysts. The CoMn-N/S-C-based ZABs achieve extremely high specific capacity (959 mAh·g−1) and good stability (350 h@5 mA·cm−2). Density functional theory (DFT) calculation shows that the introduction of Mn and S can break the electron configuration symmetry of the original Co 3d orbital, lower the d-band center of the Co site, and optimize the desorption behavior of OH intermediate, thereby increasing the ORR activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, J. N.; Zhao, C. X.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. A brief history of zinc-air batteries: 140 years of epic adventures. Energy Environ. Sci. 2022, 15, 4542–4553.

    Article  Google Scholar 

  2. Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

    Article  CAS  Google Scholar 

  3. Li, Z. J.; Ji, S. Q.; Wang, C.; Liu, H. X.; Leng, L. P.; Du, L.; Gao, J. C.; Qiao, M.; Horton, J. H.; Wang, Y. Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries. Adv. Mater. 2023, 35, 2300905.

    Article  CAS  Google Scholar 

  4. Tao, L.; Wang, K.; Lv, F.; Mi, H. T.; Lin, F. X.; Luo, H.; Guo, H. Y.; Zhang, Q. H.; Gu, L.; Luo, M. C. et al. Precise synthetic control of exclusive ligand effect boosts oxygen reduction catalysis. Nat. Commun. 2023, 14, 6893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, G. B.; An, Y.; Liu, S. W.; Sun, F. F.; Qi, H. Y.; Wu, H. F.; He, Y. H.; Liu, P.; Shi, R.; Zhang, J. et al. Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction. Energy Environ. Sci. 2022, 15, 2619–2628.

    Article  CAS  Google Scholar 

  6. Dong, F. L.; Liu, Y. R.; Lv, Z. H.; Wang, C. L.; Yang, W. X.; Wang, B. The metal–support interaction effect in the carbon-free PEMFC cathode catalysts. J. Mater. Chem. A 2023, 11, 23106–23132.

    Article  CAS  Google Scholar 

  7. Chen, Z. Y.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W. B.; Han, L.; Guo, Y. Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem., Int. Ed. 2021, 60, 25404–25410.

    Article  CAS  Google Scholar 

  8. Liu, H.; Jiang, L. Z.; Sun, Y. Y.; Khan, J.; Feng, B.; Xiao, J. M.; Zhang, H. D.; Xie, H. J.; Li, L. N.; Wang, S. Y. et al. Revisiting the role of sulfur functionality in regulating the electron distribution of single-atomic Fe sites toward enhanced oxygen reduction. Adv. Funct. Mater. 2023, 33, 2304074.

    Article  CAS  Google Scholar 

  9. Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.

    Article  CAS  Google Scholar 

  10. Zhao, Y. Z.; Zhang, Z. L.; Liu, L.; Wang, Y.; Wu, T.; Qin, W. J.; Liu, S. J.; Jia, B. R.; Wu, H. Y.; Zhang, D. Y. et al. S and O co-coordinated Mo single sites in hierarchically porous tubes from sulfur-enamine copolymerization for oxygen reduction and evolution. J. Am. Chem. Soc. 2022, 144, 20571–20581.

    Article  CAS  PubMed  Google Scholar 

  11. Masnica, J. P.; Sibt-e-Hassan, S.; Potgieter-Vermaak, S.; Regmi, Y. N.; King, L. A.; Tosheva, L. ZIF-8-derived Fe-C catalysts: Relationship between structure and catalytic activity toward the oxygen reduction reaction. Green Carbon 2023, 1, 160–169.

    Article  Google Scholar 

  12. Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

    Article  CAS  Google Scholar 

  13. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

    Article  CAS  Google Scholar 

  14. Li, L. H.; Liu, X. J.; Wang, J. M.; Liu, R.; Liu, Y. R.; Wang, C. L.; Yang, W. X.; Feng, X.; Wang, B. Atomically dispersed Co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn-air batteries. J. Mater. Chem. A 2022, 10, 18723–18729.

    Article  CAS  Google Scholar 

  15. Yao, W.; Hu, A. Q.; Ding, J. T.; Wang, N. S.; Qin, Z.; Yang, X. F.; Shen, K.; Chen, L. Y.; Li, Y. W. Hierarchically ordered macro-mesoporous electrocatalyst with hydrophilic surface for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2301894.

    Article  CAS  Google Scholar 

  16. Xie, X. Y.; Shang, L.; Xiong, X. Y.; Shi, R.; Zhang, T. R. Fe single-atom catalysts on MOF-5 derived carbon for efficient oxygen reduction reaction in proton exchange membrane fuel cells. Adv. Energy Mater. 2022, 12, 2102688.

    Article  CAS  Google Scholar 

  17. Liu, X. J.; Liu, Y. R.; Yang, W. X.; Feng, X.; Wang, B. Controlled modification of axial coordination for transition-metal single-atom electrocatalyst. Chem.—Eur. J. 2022, 28, e202201471.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Y. R.; Liu, X. J.; Lv, Z. H.; Liu, R.; Li, L. H.; Wang, J. M.; Yang, W. X.; Jiang, X.; Feng, X.; Wang, B. Tuning the spin state of the iron center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202117617.

    Article  CAS  Google Scholar 

  19. Zeng, Y. C.; Li, C. Z.; Li, B. Y.; Liang, J. S.; Zachman, M. J.; Cullen, D. A.; Hermann, R. P.; Alp, E. E.; Lavina, B.; Karakalos, S. et al. Tuning the thermal activation atmosphere breaks the activity-stability trade-off of Fe-N-C oxygen reduction fuel cell catalysts. Nat. Catal. 2023, 6, 1215–1227.

    Article  CAS  Google Scholar 

  20. Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.

    Article  CAS  Google Scholar 

  21. Hu, L. Y.; Dai, C. L.; Chen, L. W.; Zhu, Y. H.; Hao, Y. C.; Zhang, Q. H.; Gu, L.; Feng, X.; Yuan, S.; Wang, L. et al. Metal-triazolate-framework-derived FeN4Cl1 single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 27324–27329.

    Article  CAS  Google Scholar 

  22. Pedersen, A.; Barrio, J.; Li, A.; Jervis, R.; Brett, D. J. L.; Titirici, M. M.; Stephens, I. E. L. Dual-metal atom electrocatalysts: Theory, synthesis, characterization, and applications. Adv. Energy Mater. 2022, 12, 2102715.

    Article  CAS  Google Scholar 

  23. Liu, Y. R.; Yuan, S.; Sun, C. T.; Wang, C. L.; Liu, X. J.; Lv, Z. H.; Liu, R.; Meng, Y. Z.; Yang, W. X.; Feng, X. et al. Optimizing Fe-3d electron delocalization by asymmetric Fe-Cu diatomic configurations for efficient anion exchange membrane fuel cells. Adv. Energy Mater. 2023, 13, 2302719.

    Article  CAS  Google Scholar 

  24. Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

    Article  CAS  Google Scholar 

  25. Fu, C.; Qi, X. Q.; Zhao, L.; Yang, T. T.; Xue, Q.; Zhu, Z. Z.; Xiong, P.; Jiang, J. X.; An, X. G.; Chen, H. Y. et al. Synergistic cooperation between atomically dispersed Zn and Fe on porous nitrogen-doped carbon for boosting oxygen reduction reaction. Appl. Catal. B: Environ. 2023, 335, 122875.

    Article  CAS  Google Scholar 

  26. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    Article  CAS  Google Scholar 

  27. Liu, M.; Li, N.; Cao, S. F.; Wang, X. M.; Lu, X. Q.; Kong, L. J.; Xu, Y. H.; Bu, X. H. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 2022, 34, 2107421.

    Article  CAS  Google Scholar 

  28. Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.

    Article  CAS  Google Scholar 

  29. Zhu, P.; Xiong, X.; Wang, X. L.; Ye, C. L.; Li, J. Z.; Sun, W. M.; Sun, X. H.; Jiang, J. J.; Zhuang, Z. B.; Wang, D. S. et al. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 2022, 22, 9507–9515.

    Article  CAS  PubMed  Google Scholar 

  30. Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 1975, 8, 125–131.

    Article  CAS  Google Scholar 

  31. Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

    Article  CAS  Google Scholar 

  32. Zhu, Q. L.; Li, J.; Xu, Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc. 2013, 135, 10210–10213.

    Article  CAS  PubMed  Google Scholar 

  33. Li, H. X.; Wen, Y. L.; Jiang, M.; Yao, Y.; Zhou, H. H.; Huang, Z. Y.; Li, J. W.; Jiao, S. Q.; Kuang, Y. F.; Luo, S. L. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2011289.

    Article  CAS  Google Scholar 

  34. Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

    Article  CAS  Google Scholar 

  36. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, J. M.; Liu, X. J.; Li, L. H.; Liu, R.; Liu, Y. R.; Wang, C. L.; Lv, Z. H.; Yang, W. X.; Feng, X.; Wang, B. Heterogeneous assembling 3D free-standing Co@carbon membrane enabling efficient fluid and flexible zinc-air batteries. Nano Res. 2023, 16, 9327–9334.

    Article  CAS  Google Scholar 

  38. Liu, F.; Shi, L.; Lin, X. N.; Zhang, B.; Long, Y. D.; Ye, F. H.; Yan, R. Q.; Cheng, R. Y.; Hu, C. G.; Liu, D. et al. Fe/Co dual metal catalysts modulated by S-ligands for efficient acidic oxygen reduction in PEMFC. Sci. Adv. 2023, 9, eadg0366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yan, X. X.; Liu, D.; Guo, P. F.; He, Y. F.; Wang, X. Q.; Li, Z. L.; Pan, H. G.; Sun, D. L.; Fang, F.; Wu, R. B. Atomically dispersed Co2MnN8 triatomic sites anchored in N-doped carbon enabling efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2210975.

    Article  CAS  Google Scholar 

  40. Liu, H.; Jiang, L. Z.; Khan, J.; Wang, X. X.; Xiao, J. M.; Zhang, H. D.; Xie, H. J.; Li, L. N.; Wang, S. Y.; Han, L. Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202214988.

    Article  CAS  Google Scholar 

  41. Liu, J. Q.; Chen, W. B.; Yuan, S.; Liu, T.; Wang, Q. High-coordination Fe-N4SP single-atom catalysts via the multi-shell synergistic effect for the enhanced oxygen reduction reaction of rechargeable Zn-air battery cathodes. Energy Environ. Sci. 2024, 17, 249–259.

    Article  CAS  Google Scholar 

  42. Bai, X.; Wang, Y.; Han, J. Y.; Niu, X. D.; Guan, J. Q. Engineering the electronic structure of isolated manganese sites to improve the oxygen reduction, Zn-air battery and fuel cell performances. Appl. Catal. B: Environ. 2023, 337, 122966.

    Article  CAS  Google Scholar 

  43. Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

    Article  CAS  Google Scholar 

  44. Zhao, C. X.; Liu, X. Y.; Liu, J. N.; Wang, J.; Wan, X.; Li, X. Y.; Tang, C.; Wang, C. D.; Song, L.; Shui, J. L. et al. Inductive effect on single-atom sites. J. Am. Chem. Soc. 2023, 145, 27531–27538.

    Article  CAS  PubMed  Google Scholar 

  45. Pei, J. J.; Yang, L.; Lin, J.; Zhang, Z. D.; Sun, Z. Y.; Wang, D. S.; Chen, W. X. Integrating host design and tailored electronic effects of yolk–shell Zn-Mn diatomic sites for efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2024, 63, e202316123.

    Article  CAS  Google Scholar 

  46. Zhou, S. Z.; Jang, H.; Qin, Q.; Hou, L. Q.; Kim, M. G.; Liu, S. G.; Liu, X. E.; Cho, J. Boosting hydrogen evolution reaction by phase engineering and phosphorus doping on Ru/P-TiO2. Angew. Chem., Int. Ed. 2022, 61, e202212196.

    Article  CAS  Google Scholar 

  47. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  48. Luo, Y. Z.; Wang, P.; Zhang, G. X.; Wu, S. S.; Chen, Z. S.; Ranganathan, H.; Sun, S. H.; Shi, Z. C. Mn-doped nickel-iron phosphide heterointerface nanoflowers for efficient alkaline freshwater/seawater splitting at high current densities. Chem. Eng. J. 2023, 454, 140061.

    Article  CAS  Google Scholar 

  49. Gao, G. P.; Waclawik, E. R.; Du, A. J. Computational screening of two-dimensional coordination polymers as efficient catalysts for oxygen evolution and reduction reaction. J. Catal. 2017, 352, 579–585.

    Article  CAS  Google Scholar 

  50. Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFB1506300), the National Natural Science Foundation of China (Nos. 21922502, 22075018, and 22375017), Young Elite Scientists Sponsorship Program by BAST (No. BYESS2023163), CNPC Innovation Found (No. 2022DQ02-0606), Institute of High Energy Physics, Chinese Academy of Sciences for synchrotron radiation (BSRF) testing, Beijing Institute of Technology Research Fund Program, and Analysis and Testing Center of Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxiu Yang or Bo Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Liu, Y., Lv, Z. et al. Coordination-environment regulation of atomic Co-Mn dual-sites for efficient oxygen reduction reaction. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6633-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6633-2

Keywords

Navigation