Skip to main content
Log in

Non-bonding modulations between single atomic cerium and monodispersed selenium sites towards efficient oxygen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Currently, dual atomic catalysts (DACs) with neighboring active sites for oxygen reduction reaction (ORR) still meet lots of challenges in the synthesis, especially the construction of atomic pairs of elements from different blocks of the periodic table. Herein, a “rare earth (Ce)-metalloid (Se)” non-bonding heteronuclear diatomic electrocatalyst has been constructed for ORR by rational coordination and carbon support defect engineering. Encouraging, the optimized Ce−Se diatomic catalysts (Ce−Se DAs/NC) displayed a half-wave potential of 0.886 V vs. reversible hydrogen electrode (RHE) and excellent stability, which surpass those of separate Ce or Se single atoms and most single/dual atomic catalysts ever reported. In addition, a primary zinc-air battery constructed using Ce−Se DAs/NC delivers a higher peak power density (209.2 mW·cm−2) and specific capacity (786.4 mAh·gZn−1) than state-of-the-art noble metal catalysts Pt/C. Theoretical calculations reveal that the Ce−Se DAs/NC has improved the electroactivity of the Ce−N4 region due to the electron transfer towards the nearby Se specific activity (SA) sites. Meanwhile, the more electron-rich Se sites promote the adsorptions of key intermediates, which results in the optimal performances of ORR on Ce−Se DAs/NC. This work provides new perspectives on electronic structure modulations via non-bonded long-range coordination micro-environment engineering in DACs for efficient electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, Y. C.; Guo, Z. J.; Liu, H.; Zhang, S. Q.; Wang, P. S.; Lu, J.; Tong, Y. X. Heterojunction architecture of N-doped WO3 nanobundles with Ce2S3 nanodots hybridized on a carbon textile enables a highly efficient flexible photocatalyst. Adv. Funct. Mater. 2019, 29, 1903490.

    Article  CAS  Google Scholar 

  2. Wang, Y. X.; Chen, D. M.; Zhang, J. N.; Balogun, M. S.; Wang, P. S.; Tong, Y. X.; Huang, Y. C. Charge relays via dual carbon-actions on nanostructured BiVO4 for high performance photoelectrochemical water splitting. Adv. Funct. Mater. 2022, 32, 2112738.

    Article  CAS  Google Scholar 

  3. Zhu, Z. X.; Luo, L.; He, Y. X.; Mushtaq, M.; Li, J. Q.; Yang, H.; Khanam, Z.; Qu, J.; Wang, Z. M.; Balogun, M. S. High-performance alkaline freshwater and seawater hydrogen catalysis by sword-head structured Mo2N−Ni3Mo3N tunable interstitial compound electrocatalysts. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202306061.

  4. Zhang, S. L.; Zhai, D.; Sun, T. T.; Han, A. J.; Zhai, Y. L.; Cheong, W. C.; Liu, Y.; Su, C. L.; Wang, D. S.; Li, Y. D. In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Appl. Catal. B Environ. 2019, 254, 186–193.

    Article  CAS  Google Scholar 

  5. Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

    Article  Google Scholar 

  6. Fu, J.; Liang, R. L.; Liu, G. H.; Yu, A. P.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Recent progress in electrically rechargeable zinc-air batteries. Adv. Mater. 2019, 31, 1805230.

    Article  Google Scholar 

  7. Liu, J. N.; Zhao, C. X.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. A brief history of zinc-air batteries: 140 years of epic adventures. Energy Environ. Sci. 2022, 15, 4542–4553.

    Article  Google Scholar 

  8. Zhu, X. F.; Hu, C. G.; Amal, R.; Dai, L. M.; Lu, X. Y. Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities. Energy Environ. Sci. 2020, 13, 4536–4563.

    Article  CAS  Google Scholar 

  9. Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202116068.

    Article  CAS  Google Scholar 

  10. Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.

    Article  CAS  PubMed  Google Scholar 

  12. Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn−N4−CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shang, H. S.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Res. 2023, 16, 6477–6506.

    Article  CAS  Google Scholar 

  14. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    Article  CAS  PubMed  Google Scholar 

  15. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu−S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, W. Y.; Chao, Y. G.; Zhang, W. S.; Zhou, J. H.; Lv, F.; Wang, K.; Lin, F. X.; Luo, H.; Li, J.; Tong, M. P. et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 2021, 33, 2102576.

    Article  CAS  Google Scholar 

  17. Zhang, H. W.; Jin, X. D.; Lee, J. M.; Wang, X. Tailoring of active sites from single to dual atom sites for highly efficient electrocatalysis. ACS Nano 2022, 16, 17572–17592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    Article  CAS  Google Scholar 

  19. Sun, J. K.; Pan, Y. W.; Xu, M. Q.; Sun, L.; Zhang, S. L.; Deng, W. Q.; Zhai, D. Heteroatom doping regulates the catalytic performance of single-atom catalyst supported on graphene for ORR. Nano Res., in press, https://doi.org/10.1007/s12274-023-5898-1.

  20. Fu, J. H.; Dong, J. H.; Si, R.; Sun, K. J.; Zhang, J. Y.; Li, M. R.; Yu, N. N.; Zhang, B. S.; Humphrey, M. G.; Fu, Q. et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 2021, 11, 1952–1961.

    Article  CAS  Google Scholar 

  21. Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.

    Article  CAS  Google Scholar 

  22. Sui, R.; Zhang, X. J.; Wang, X. D.; Wang, X. Y.; Pei, J. J.; Zhang, Y. F.; Liu, X. R.; Chen, W. X.; Zhu, W.; Zhuang, Z. B. Silver based single atom catalyst with heteroatom coordination environment as high performance oxygen reduction reaction catalyst. Nano Res. 2022, 15, 7968–7975

    Article  CAS  Google Scholar 

  23. Wang, J.; Zhao, C. X.; Liu, J. N.; Song, Y. W.; Huang, J. Q.; Li, B. Q. Dual-atom catalysts for oxygen electrocatalysis. Nano Energy 2022, 104, 107927.

    Article  CAS  Google Scholar 

  24. Zhang, S. L.; Hou, M. C.; Zhai, Y. L.; Liu, H. J.; Zhai, D.; Zhu, Y. Q.; Ma, L.; Wei, B.; Huang, J. Dual-active-sites single-atom catalysts for advanced applications. Small 2023, 19, 2302739.

    Article  CAS  Google Scholar 

  25. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, J. C.; Yang, H. B.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.

    Article  CAS  Google Scholar 

  27. Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 4448–4463.

    Article  CAS  Google Scholar 

  28. Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

    Article  CAS  Google Scholar 

  29. Wang, X.; Zhu, Y.; Li, H.; Lee, J. M.; Tang, Y. W.; Fu, G. T. Rare-earth single-atom catalysts: A new frontier in photo/electrocatalysis. Small Methods 2022, 6, 2200413.

    Article  CAS  Google Scholar 

  30. Sun, M. Z.; Wong, H. H.; Wu, T.; Dougherty, A. W.; Huang, B. L. Stepping out of transition metals: Activating the dual atomic catalyst through main group elements. Adv. Energy Mater. 2021, 11, 2101404.

    Article  CAS  Google Scholar 

  31. Sun, K. A.; Yu, K.; Fang, J. J.; Zhuang, Z. W.; Tan, X.; Wu, Y.; Zeng, L. Y.; Zhuang, Z. B.; Pan, Y.; Chen, C. Nature-inspired design of molybdenum-selenium dual-single-atom electrocatalysts for CO2 reduction. Adv. Mater. 2022, 34, 2206478.

    Article  CAS  Google Scholar 

  32. Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem. 2023, 135, e202219191.

    Article  Google Scholar 

  33. Yin, L. L.; Zhang, S.; Sun, M. Z.; Wang, S. Y.; Huang, B. L.; Du, Y. P. Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2302485.

    Article  CAS  Google Scholar 

  34. Wang, X.; Wang, J. W.; Wang, P.; Li, L. C.; Zhang, X. Y.; Sun, D. M.; Li, Y. F.; Tang, Y. W.; Wang, Y.; Fu, G. T. Engineering 3d-2p-4f gradient orbital coupling to enhance electrocatalytic oxygen reduction. Adv. Mater. 2022, 34, 2206540.

    Article  CAS  Google Scholar 

  35. Wang, X.; Tang, Y. W.; Lee, J. M.; Fu, G. T. Recent advances in rare-earth-based materials for electrocatalysis. Chem Catal. 2022, 2, 967–1008.

    Article  CAS  Google Scholar 

  36. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

    Article  CAS  Google Scholar 

  37. Hasnip, P. J.; Pickard, C. J. Electronic energy minimisation with ultrasoft pseudopotentials. Comput. Phys. Commun. 2006, 174, 24–29.

    Article  CAS  Google Scholar 

  38. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  39. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 1992, 46, 6671–6687.

    Article  CAS  Google Scholar 

  40. Head, J. D.; Zerner, M. C. A Broyden–Fletcher–Goldfarb–Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270.

    Article  CAS  Google Scholar 

  41. McNellis, E. R.; Meyer, J.; Reuter, K. Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions. Phys. Rev. B 2009, 80, 205414.

    Article  Google Scholar 

  42. Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 2016, 116, 5105–5154.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, M. Z.; Zhao, C.; Liu, X. K.; Wang, X. L.; Zhou, F. Y.; Wang, J.; Hu, Y. M.; Zhao, Y. F.; Yao, T.; Yang, L. M. et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal. 2021, 11, 3923–3929.

    Article  CAS  Google Scholar 

  44. Hu, H.; Wang, J. J.; Cui, B. F.; Zheng, X. R.; Lin, J. G.; Deng, Y. D.; Han, X. P. Atomically dispersed selenium sites on nitrogen-doped carbon for efficient electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202114441.

    Article  CAS  Google Scholar 

  45. He, Y. T.; Yang, X. X.; Li, Y. S.; Liu, L. T.; Guo, S. W.; Shu, C. Y.; Liu, F.; Liu, Y. N.; Tan, Q.; Wu, G. Atomically dispersed Fe−Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal. 2022, 12, 1216–1227.

    Article  CAS  Google Scholar 

  46. Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4−O−NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.

    Article  CAS  Google Scholar 

  47. Tang, X. N.; Wei, Y. H.; Zhai, W. J.; Wu, Y. G.; Hu, T.; Yuan, K.; Chen, Y. W. Carbon nanocage with maximum utilization of atomically dispersed iron as efficient oxygen electroreduction nanoreactor. Adv. Mater. 2023, 35, 2208942.

    Article  CAS  Google Scholar 

  48. Liang, H. W.; Zhuang, X. D.; Brüller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.

    Article  CAS  PubMed  Google Scholar 

  49. Li, O. L.; Chiba, S.; Wada, Y.; Panomsuwan, G.; Ishizaki, T. Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 2073–2082.

    Article  CAS  Google Scholar 

  50. Li, J.; Chen, S. G.; Yang, N.; Deng, M. M.; Ibraheem, S.; Deng, J. H.; Li, J.; Li, L.; Wei, Z. D. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem., Int. Ed. 2019, 58, 7035–7039.

    Article  CAS  Google Scholar 

  51. Chen, Z. Y.; Su, X. Z.; Ding, J.; Yang, N.; Zuo, W. B.; He, Q. Y.; Wei, Z. M.; Zhang, Q.; Huang, J.; Zhai, Y. M. Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B Environ. 2022, 308, 121206.

    Article  CAS  Google Scholar 

  52. Deng, D. J.; Qian, J. C.; Liu, X. Z.; Li, H. P.; Su, D.; Li, H. N.; Li, H. M.; Xu, L. Non-covalent interaction of atomically dispersed Cu and Zn pair sites for efficient oxygen reduction reaction. Adv. Funct. Mater. 2022, 32, 2203471.

    Article  CAS  Google Scholar 

  53. Li, J. C.; Qin, X. P.; Xiao, F.; Liang, C. H.; Xu, M. J.; Meng, Y.; Sarnello, E.; Fang, L. Z.; Li, T.; Ding, S. C. et al. Highly dispersive cerium atoms on carbon nanowires as oxygen reduction reaction electrocatalysts for Zn-air batteries. Nano Lett. 2021, 21, 4508–4515.

    Article  CAS  PubMed  Google Scholar 

  54. Chu, Y. Y.; Luo, E. G.; Wei, Y.; Zhu, S. Y.; Wang, X.; Yang, L. T.; Gao, N. X.; Wang, Y.; Jiang, Z.; Liu, C. P. et a. Dual single-atom catalyst design to build robust oxygen reduction electrode via free radical scavenging. Chem Catal. 2023, 3, 100532.

    Article  CAS  Google Scholar 

  55. Zhao, Y. J.; Wang, H.; Li, J.; Fang, Y.; Kang, Y. S.; Zhao, T. Y.; Zhao, C. Y. Regulating the spin-state of rare-earth Ce single atom catalyst for boosted oxygen reduction in neutral medium. Adv. Funct. Mater. 2023, 33, 2305268.

    Article  CAS  Google Scholar 

  56. Jiang, K.; Wang, H. T. Electrocatalysis over graphene-defect-coordinated transition-metal single-atom catalysts. Chem 2018, 4, 194–195.

    Article  CAS  Google Scholar 

  57. Xiong, T. Z.; Zhu, Z. X.; He, Y. X.; Balogun, M. S.; Huang, Y. C. Phase evolution on the hydrogen adsorption kinetics of NiFe-based heterogeneous catalysts for efficient water electrolysis. Small Methods 2023, 7, 2201472.

    Article  CAS  Google Scholar 

  58. Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the National Key R&D Program of China (No. 2021YFA1501101), the National Natural Science Foundation of China (No. 21971117), the National Natural Science Foundation of China/Research Grant Council of Hong Kong Joint Research Scheme (No. N_PolyU502/21), the National Natural Science Foundation of China/Research Grants Council (RGC) of Hong Kong Collaborative Research Scheme (No. CRS_PolyU504/22), the Functional Research Funds for the Central Nankai University (No. 63186005), the Tianjin Key Lab for Rare Earth Materials and Applications (No. ZB19500202), the Open Funds (No. RERU2019001) of the State Key Laboratory of Rare Earth Resource Utilization, the 111 Project (No. B18030) from China, the Beijing-Tianjin-Hebei Collaborative Innovation Project (No. 19YFSLQY00030), the Outstanding Youth Project of Tianjin 21 Natural Science Foundation (No. 20JCJQJC00130), the Key Project of Tianjin Natural Science Foundation (No. 20JCZDJC00650), the funding for Projects of Strategic Importance of The Hong Kong Polytechnic University (Project Code: 1-ZE2V), the Shenzhen Fundamental Research Scheme-General Program (No. JCYJ20220531090807017), the Natural Science Foundation of Guangdong Province (No. 2023A1515012219), and the Departmental General Research Fund (Project Code: ZVUL) from The Hong Kong Polytechnic University. B. L. H. also thanks the support from Research Centre for Carbon-Strategic Catalysis (RC-CSC), Research Institute for Smart Energy (RISE), and Research Institute for Intelligent Wearable Systems (RI-IWEAR) of the Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bolong Huang or Yaping Du.

Electronic Supplementary Material

12274_2024_6416_MOESM1_ESM.pdf

Non-bonding modulations between single atomic cerium and monodispersed selenium sites towards efficient oxygen reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Zhang, S., Sun, M. et al. Non-bonding modulations between single atomic cerium and monodispersed selenium sites towards efficient oxygen reduction. Nano Res. 17, 4753–4763 (2024). https://doi.org/10.1007/s12274-024-6416-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6416-9

Keywords

Navigation