Skip to main content
Log in

Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO2 cycloaddition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs)-based nanoreactors have attracted broad interest in many fields due to their void-confinement effects. However, the inherent drawback of conventional nanoreactors is the lack of internal active sites, which limits their widespread utilization. Herein, we report the construction of hierarchical COF (EB-TFP) nanoreactor with pre-synthesized polyoxometalates (POM, [PV2W10O40]5− (PV2W10)) clusters encapsulated inside of COF (POM@COF). PV2W10@EB-TFP anchors nucleophilic-group (Br ions) and PV2W10 anion cluster within the COF framework via electrostatic interactions, which not only simplifies the reaction system but also enhances catalytic efficiency. The reaction performance of the PV2W10@EB-TFP nanoreactor can be tuned to achieve excellent catalytic activity in CO2 cycloaddition reaction (CCR) for ∼ 97.63% conversion and ∼ 100% selectivity under visible light irradiation. A mechanistic study based on density functional theory (DFT) calculations and in-situ characterization was also carried out. In summary, we have reported a method for achieving the uniform dispersion of POM single clusters into COF nanoreactor, demonstrating the potential of POM@COF nanoreactor for synergistic photothermal catalytic CO2 cycloaddition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayardon, J.; Holz, J.; Schaffner, B.; Andrushko, V.; Verevkin, S.; Preetz, A.; Börner, A. Propylene carbonate as a solvent for asymmetric hydrogenations. Angew. Chem., Int. Ed. 2007, 46, 5971–5974.

    Article  CAS  Google Scholar 

  2. Chai, J. C.; Liu, Z. H.; Zhang, J. J.; Sun, J. R.; Tian, Z. Y.; Ji, Y. Y.; Tang, K.; Zhou, X. H.; Cui, G. L. A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 17897–17905.

    Article  CAS  PubMed  Google Scholar 

  3. Cai, A. J.; Guo, W. S.; Martínez-Rodríguez, L.; Kleij, A. W. Palladium-catalyzed regio- and enantioselective synthesis of allylic amines featuring tetrasubstituted tertiary carbons. J. Am. Chem. Soc. 2016, 138, 14194–14197.

    Article  CAS  PubMed  Google Scholar 

  4. Bobbink, F. D.; Dyson, P. J. Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: State-of-the-art and beyond. J. Catal. 2016, 343, 52–61.

    Article  CAS  Google Scholar 

  5. Li, G. Q.; Dong, S.; Fu, P.; Yue, Q. H.; Zhou, Y.; Wang, J. Synthesis of porous poly(ionic liquid)s for chemical CO2 fixation with epoxides. Green Chem. 2022, 24, 3433–3460.

    Article  CAS  Google Scholar 

  6. Wu, H.; Kong, X. Y.; Wen, X. M.; Chai, S. P.; Lovell, E. C.; Tang, J. W.; Ng, Y. H. Metal-organic framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4. Angew. Chem., Int. Ed. 2021, 60, 8455–8459.

    Article  CAS  Google Scholar 

  7. Li, X. X.; Ji, T.; Gao, J. Y.; Chen, W. C.; Yuan, Y.; Sha, H. Y.; Faller, R.; Shan, G. G.; Shao, K. Z.; Wang, X. L. et al. An unprecedented fully reduced {MoV60} polyoxometalate: From an all-inorganic molecular light-absorber model to improved photoelectronic performance. Chem. Sci. 2022, 13, 4573–4580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, Q. H.; Peng, H. T.; Zhang, Q. J.; Qian, X.; Chen, X.; Tang, X.; Dai, S.; Zhao, J. J.; Jiang, K.; Yang, Q. et al. Atomically dispersed high-density Al–N4 sites in porous carbon for efficient photodriven CO2 cycloaddition. Adv. Mater. 2021, 33, e2103186.

    Article  PubMed  Google Scholar 

  9. Sarkar, S.; Ghosh, S.; Islam, S. M. A Zn(II)-functionalized COF as a recyclable catalyst for the sustainable synthesis of cyclic carbonates and cyclic carbamates from atmospheric CO2. Org. Biomol. Chem. 2022, 20, 1707–1722.

    Article  CAS  PubMed  Google Scholar 

  10. Yan, X. M.; Xu, J. B.; Zhang, T.; Si, C.; Jiao, J. C.; Li, J.; Han, Q. X. Designing polyoxometalate-based metal-organic framework for oxidation of styrene and cycloaddition of CO2 with epoxides. Chin. Chem. Lett. 2023, 34, 107851.

    Article  CAS  Google Scholar 

  11. Domaille, P. J. The 1- and 2-dimensional tungsten-183 and vanadium-51 NMR characterization of isopolymetalates and heteropolymetalates. J. Am. Chem. Soc. 1984, 106, 7677–7687.

    Article  CAS  Google Scholar 

  12. Liu, P.; Cai, K. X.; Tao, D. J.; Zhao, T. X. The mega-merger strategy: M@COF core-shell hybrid materials for facilitating CO2 capture and conversion to monocyclic and polycyclic carbonates. Appl. Catal. B Environ. 2023, 341, 123317.

    Article  Google Scholar 

  13. Zhu, Q. S.; An, H. Y.; Xu, T. Q.; Chang, S. Z.; Chen, Y. H.; Luo, H. Y.; Huang, Y. H. PW12-M@COFs as efficient photocatalysts for visible-light-driven oxidation of various sulfides and degradation of chemical warfare agent simulant. Appl. Catal. A General 2023, 662, 119283.

    Article  CAS  Google Scholar 

  14. Massart, R.; Contant, R.; Fruchart, J. M.; Ciabrini, J. P.; Fournier, M. 31P NMR studies on molybdic and tungstic heteropolyanions. Correlation between structure and chemical shift. Inorg. Chem. 1977, 16, 2916–2921.

    Article  CAS  Google Scholar 

  15. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  16. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  17. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  CAS  Google Scholar 

  18. Guo, C. X.; Tian, X.; Fu, X. Y.; Qin, G. Q.; Long, J.; Li, H.; Jing, H. J.; Zhou, Y. H.; Xiao, J. P. Computational design of spinel oxides through coverage-dependent screening on the reaction phase diagram. ACS Catal. 2022, 12, 6781–6793.

    Article  CAS  Google Scholar 

  19. Mal, A.; Mishra, R. K.; Praveen, V. K.; Khayum, M. A.; Banerjee, R.; Ajayaghosh, A. Supramolecular reassembly of self-exfoliated ionic covalent organic nanosheets for label-free detection of double-stranded DNA. Angew. Chem., Int. Ed. 2018, 57, 8443–8447.

    Article  CAS  Google Scholar 

  20. Ma, H. P.; Liu, B. L.; Li, B.; Zhang, L. M.; Li, Y. G.; Tan, H. Q.; Zang, H. Y.; Zhu, G. S. Cationic covalent organic frameworks: A simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 2016, 138, 5897–5903.

    Article  CAS  PubMed  Google Scholar 

  21. Farhadi, S.; Mahmoudi, F.; Kucerakova, M.; Rohlicek, J.; Dusek, M. New hybrid nanostructures based on Keggin-type 12-tungstophosphate and some metal-semicarbazone complexes: Synthesis, X-ray crystal structures and spectroscopic studies. J. Mol. Struct. 2020, 1217, 128385.

    Article  CAS  Google Scholar 

  22. Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527.

    Article  CAS  PubMed  Google Scholar 

  23. Li, C. L.; Zhang, Z. J.; Liu, R. In situ growth of 3D NiFe LDH-POM micro-flowers on nickel foam for overall water splitting. Small, 2020, 16, 2003777.

    Article  CAS  Google Scholar 

  24. Wu, Y.; Wang, H.; Tu, W. G.; Wu, S. Y.; Chew, J. W. Effects of composition faults in ternary metal chalcogenides (ZnxIn2S3+x, x = 1–5) layered crystals for visible-light-driven catalytic hydrogen generation and carbon dioxide reduction. Appl. Catal. B Environ. 2019, 256, 117810.

    Article  CAS  Google Scholar 

  25. Prajapati, P. K.; Kumar, A.; Jain, S. L. First photocatalytic synthesis of cyclic carbonates from CO2 and epoxides using CoPc/TiO2 hybrid under mild conditions. ACS Sustainable Chem. Eng. 2018, 6, 7799–7809.

    Article  CAS  Google Scholar 

  26. Zhang, M. Y.; Li, J. K.; Wang, R.; Zhao, S. N.; Zang, S. Q.; Mak, T. C. W. Construction of core-shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. Adv. Sci. (Weinh.) 2021, 8, 2101884.

    CAS  PubMed  Google Scholar 

  27. Xu, M. R.; Zhang, H.; Guégan, F.; Frapper, G.; Corbet, M.; Marion, P.; Richard, F.; Clacens, J. M. Activated charcoal grafted with phenyl imidazole groups for Knœvenagel condensation of furfural with malononitrile. Catal. Commun. 2020, 147, 106151.

    Article  CAS  Google Scholar 

  28. Shafiei, H.; Hassaninejad-Darzi, S. K. Electroanalytical application of Ag@POM@rGO nanocomposite and ionic liquid modified carbon paste electrode for the quantification of ciprofloxacin antibiotic. J. Electroanal. Chem. 2023, 935, 117321.

    Article  CAS  Google Scholar 

  29. Akram, B.; Ni, B.; Wang, X. Van Der Waals integrated hybrid POM-zirconia flexible belt-Like superstructures. Adv. Mater. 2020, 32, 1906794.

    Article  CAS  Google Scholar 

  30. Zhang, Y. H.; Yuan, M. N.; Wang, Z.; Liu, Y.; Yang, G. H. High-efficiency components separation of corncob catalyzed by vanadium-substituted polyoxometalate in choline chloride-lactic acid reaction system. Appl. Catal. A Gen. 2022, 641, 118680.

    Article  CAS  Google Scholar 

  31. Zhang, M.; Liu, J. Q.; Li, H. P.; Wei, Y. C.; Fu, Y. J.; Liao, W. Y.; Zhu, L. H.; Chen, G. Y.; Zhu, W. S.; Li, H. M. Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization. Appl. Catal. B Environ. 2020, 271, 118936.

    Article  CAS  Google Scholar 

  32. Yu, K.; Puthiaraj, P.; Ahn, W. S. One-pot catalytic transformation of olefins into cyclic carbonates over an imidazolium bromide-functionalized Mn(III)-porphyrin metal-organic framework. Appl. Catal. B Environ. 2020, 273, 119059.

    Article  CAS  Google Scholar 

  33. Kumar, A.; Samanta, S.; Srivastava, R. Graphitic carbon nitride modified with Zr-thiamine complex for efficient photocatalytic CO2 insertion to epoxide: Comparison with traditional thermal catalysis. ACS Appl. Nano Mater. 2021, 4, 6805–6820.

    Article  CAS  Google Scholar 

  34. Qin, Z.; Li, H.; Yang, X. F.; Chen, L. Y.; Li, Y. W.; Shen, K. Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO2 fixation. Appl. Catal. B Environ. 2022, 307, 121163.

    Article  CAS  Google Scholar 

  35. Liu, C. Y.; Niu, H. H.; Wang, D. X.; Gao, C.; Said, A.; Liu, Y. S.; Wang, G.; Tung, C. H.; Wang, Y. F. S-scheme Bi-oxide/Ti-oxide molecular hybrid for photocatalytic cycloaddition of carbon dioxide to epoxides. ACS Catal. 2022, 12, 8202–8213.

    Article  CAS  Google Scholar 

  36. Li, N.; Liu, J.; Liu, J. J.; Dong, L. Z.; Xin, Z. F.; Teng, Y. L.; Lan, Y. Q. Adenine components in biomimetic metal-organic frameworks for efficient CO2 photoconversion. Angew. Chem., Int. Ed. 2019, 58, 5226–5231.

    Article  CAS  Google Scholar 

  37. Chen, L.; Zhang, J.; Cai, K. R.; Wang, L. K.; Zhu, X. J.; Yu, Z. P.; Zhong, F.; Zhou, H. P. Molecular engineering of covalent organic frameworks with elevated mitochondrial-targeting for cancer cell suppression. Sens. Actuat. B Chem. 2022, 350, 130861.

    Article  CAS  Google Scholar 

  38. Gong, Y. N.; Zhong, W. H.; Li, Y.; Qiu, Y. Z.; Zheng, L. R.; Jiang, J.; Jiang, H. L. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 16723–16731.

    Article  CAS  PubMed  Google Scholar 

  39. Kurisingal, J. F.; Rachuri, Y.; Gu, Y.; Choe, Y.; Park, D. W. Multi-variate metal organic framework as efficient catalyst for the cycloaddition of CO2 and epoxides in a gas-liquid-solid reactor. Chem. Eng. J. 2020, 386, 121700.

    Article  CAS  Google Scholar 

  40. Dai, W. L.; Zou, M. L.; Long, J. F.; Li, B.; Zhang, S. Q.; Yang, L. X.; Wang, D.; Mao, P.; Luo, S. L.; Luo, X. B. Nanoporous N-doped carbon/ZnO hybrid derived from zinc aspartate: An acid-base bifunctional catalyst for efficient fixation of carbon dioxide into cyclic carbonates. Appl. Surf. Sci. 2021, 540, 148311.

    Article  CAS  Google Scholar 

  41. Chen, S. M.; Liu, Y.; Guo, J. P.; Li, P. Z.; Huo, Z. Y.; Ma, P. T.; Niu, J. Y.; Wang, J. P. A multi-component polyoxometalate and its catalytic performance for CO2 cycloaddition reactions. Dalton Trans. 2015, 44, 10152–10155.

    Article  CAS  PubMed  Google Scholar 

  42. Ge, W. L.; Wang, X. C.; Zhang, L. Y.; Du, L.; Zhou, Y.; Wang, J. Fully-occupied Keggin type polyoxometalate as solid base for catalyzing CO2 cycloaddition and Knoevenagel condensation. Catal. Sci. Technol. 2016, 6, 460–167.

    Article  CAS  Google Scholar 

  43. Li, X. D.; Liang, L.; Sun, Y. F.; Xu, J. Q.; Jiao, X. C.; Xu, X. L.; Ju, H. X.; Pan, Y.; Zhu, J. F.; Xie, Y. Ultrathin conductor enabling efficient IR light CO2 reduction. J. Am. Chem. Soc. 2019, 141, 423–430.

    Article  CAS  PubMed  Google Scholar 

  44. He, Y. Z.; Xu, M. S.; Xia, J. H.; Zhang, C. H.; Song, X. T.; Zhao, X. F.; Fu, M.; Li, S. Q.; Liu, X. Y. Effect of exposed active sites of semi-amorphous Fe-BTC on photocatalytic CO2 cycloaddition reaction under ambient conditions. Mol. Catal. 2023, 542, 113134.

    Article  CAS  Google Scholar 

  45. Zhai, G. Y.; Liu, Y. Y.; Mao, Y. Y.; Zhang, H. G.; Lin, L. T.; Li, Y. J.; Wang, Z. Y.; Cheng, H. F.; Wang, P.; Zheng, Z. K. et al. Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc. Appl. Catal. B Environ. 2022, 301, 120793.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 22101289), Hundred Talents Programs in Chinese Academy of Sciences, the National Key Research and Development Program of China (No. 2021YFA1502200), Bellwethers Project of Zhejiang Research and Development Plan (No. 2022C01158), Ningbo S&T Innovation 2025 Major Special Program (Nos. 2020Z107 and 2022Z205), and Ningbo Yongjiang Talent Introduction Programme (Nos. 2021A-111-G and 2021A-036-B). We thank the discussion with Dr. Chenxi Guo from SUPCON Technology Co., Ltd. for the DFT computations in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunqing Zhu or Peilei He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhu, Y., Wang, W. et al. Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO2 cycloaddition. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6626-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6626-1

Keywords

Navigation