Skip to main content
Log in

Polymer electrolytes for flexible zinc-air batteries: Recent progress and future directions

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This review article delves into the development of electrolytes for flexible zinc-air batteries (FZABs), a critical component driving the advancement of flexible electronics. We started by surveying the current advancements in electrolyte technologies, including solid-state and gel-based types, and their contributions to enhance the flexibility, efficiency, and durability of FZABs. Secondly, we explored the challenges in this domain, focusing on maintaining electrolyte stability under mechanical stress, ensuring compatibility with flexible substrates, optimizing ion conductivity, and under harsh environmental conditions. Furthermore, the key issues regarding interface details between electrolyte and the electrodes are covered as well. We then discussed the future of electrolyte development in FZABs, highlighting potential avenues such as materials development, sustainability, in-situ studies, and battery integration. This review offers an in-depth overview of the advancements, challenges, and potential breakthroughs in creating electrolytes for FZABs over the past five years. It serves as a guide for both researchers and industry professionals in this dynamic area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523–533.

    Article  CAS  PubMed  Google Scholar 

  2. Huang, S. Y.; Liu, Y.; Zhao, Y.; Ren, Z. F.; Guo, C. F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater. 2019, 29, 1805924.

    Article  Google Scholar 

  3. Tang, J. Carbon nanotube-based flexible electronics. In Flexible, Wearable, and Stretchable Electronics. CRS Press, 2020; pp 137–156.

  4. You, R.; Liu, Y. Q.; Hao, Y. L.; Han, D. D.; Zhang, Y. L.; You, Z. Laser fabrication of graphene-based flexible electronics. Adv. Mater. 2020, 32, 1901981.

    Article  CAS  Google Scholar 

  5. Li, D. D.; Lai, W. Y.; Zhang, Y. Z.; Huang, W. Printable transparent conductive films for flexible electronics. Adv. Mater. 2018, 30, 1704738.

    Article  Google Scholar 

  6. Liu, Y. Q.; He, K.; Chen, G.; Leow, W. R.; Chen, X. D. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 2017, 117, 12893–12941.

    Article  CAS  PubMed  Google Scholar 

  7. Research, G. V. Flexible electronics market size, share & trends analysis report by component, by application (consumer electronics, automotive, healthcare, industrial), by region, and segment forecasts, 2023–2030. Grand View Research 2021.

  8. Fan, X. Y.; Liu, B.; Ding, J.; Deng, Y. D.; Han, X. P.; Hu, W. B.; Zhong, C. Flexible and wearable power sources for next-generation wearable electronics. Batter. Supercaps 2020, 3, 1262–1274.

    Article  Google Scholar 

  9. Gao, M. Y.; Wang, P.; Jiang, L. L.; Wang, B. W.; Yao, Y.; Liu, S.; Chu, D. W.; Cheng, W. L.; Lu, Y. R. Power generation for wearable systems. Energy Environ. Sci. 2021, 14, 2114–2157.

    Article  Google Scholar 

  10. Maharjan, P.; Bhatta, T.; Cho, H.; Hui, X.; Park, C.; Yoon, S.; Salauddin, M.; Rahman, M. T.; Rana, S. S.; Park, J. Y. A fully functional universal self-chargeable power module for portable/wearable electronics and self-powered IoT applications. Adv. Energy Mater. 2020, 10, 2002782.

    Article  CAS  Google Scholar 

  11. Zhou, J. W.; Cheng, J. L.; Wang, B.; Peng, H. S.; Lu, J. Flexible metal-gas batteries: A potential option for next-generation power accessories for wearable electronics. Energy Environ. Sci. 2020, 13, 1933–1970.

    Article  CAS  Google Scholar 

  12. Jia, R.; Shen, G. Z.; Qu, F. Y.; Chen, D. Flexible on-chip micro-supercapacitors: Efficient power units for wearable electronics. Energy Stor. Mater. 2020, 27, 169–186.

    Google Scholar 

  13. Shi, X. L.; Chen, W. Y.; Zhang, T.; Zou, J.; Chen, Z. G. Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy Environ. Sci. 2021, 14, 729–764.

    Article  CAS  Google Scholar 

  14. Wu, Z. P.; Wang, Y. L.; Liu, X. B.; Lv, C.; Li, Y. S.; Wei, D.; Liu, Z. F. Carbon-nanomaterial- based flexible batteries for wearable electronics. Adv. Mater. 2019, 31, 1800716.

    Article  Google Scholar 

  15. Chen, J. Y.; Liang, J. X.; Zhou, Y.; Sha, Z.; Lim, S.; Huang, F.; Han, Z. J.; Brown, S. A.; Cao, L. Y.; Wang, D. W. et al. A vertical graphene enhanced Zn-MnO2 flexible battery towards wearable electronic devices. J. Mater. Chem. A 2021, 9, 575–584.

    Article  CAS  Google Scholar 

  16. Zheng, J.; Solco, S. F. D.; Wong, C. J. E.; Sia, S. A.; Tan, X. Y.; Cao, J.; Yeo, J. C. C.; Yan, W. L.; Zhu, Q.; Yan, Q. Y. et al. Integrating recyclable polymers into thermoelectric devices for green electronics. J. Mater. Chem. A 2022, 10, 19787–19796.

    Article  CAS  Google Scholar 

  17. Tang, T.; Kyaw, A. K. K.; Zhu, Q.; Xu, J. W. Water-dispersible conducting polyazulene and its application in thermoelectrics. Chem. Commun. 2020, 56, 9388–9391.

    Article  CAS  Google Scholar 

  18. Cao, J.; Sim, Y.; Tan, X. Y.; Zheng, J.; Chien, S. W.; Jia, N.; Chen, K. W.; Tay, Y. B.; Dong, J. F.; Yang, L. et al. Upcycling silicon photovoltaic waste into thermoelectrics (Adv. Mater. 19/2022). Adv. Mater. 2022, 34, 2270144

    Article  Google Scholar 

  19. Xiang, P.; Chen, X. F.; Xiao, B. B.; Wang, Z. M. Highly flexible hydrogen boride monolayers as potassium-ion battery anodes for wearable electronics. ACS Appl. Mater. Interfaces 0099, 11, 8115–8125.

    Article  Google Scholar 

  20. Zhang, X. L.; Tang, Y. B.; Zhang, F.; Lee, C. S. A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 2016, 6, 1502588.

    Article  Google Scholar 

  21. Huang, Z.; Luo, P. F.; Jia, S. K.; Zheng, H. H.; Lyu, Z. C. A sulfur-doped carbon-enhanced Na3V2(PO4)3 nanocomposite for sodium-ion storage. J. Phys. Chem. Solids 2022, 167, 110746.

    Article  CAS  Google Scholar 

  22. Wang, M.; Jiang, C. L.; Zhang, S. Q.; Song, X. H.; Tang, Y. B.; Cheng, H. M. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 2018, 10, 667–672.

    Article  CAS  PubMed  Google Scholar 

  23. Mu, S. N.; Liu, Q. R.; Kidkhunthod, P.; Zhou, X. L.; Wang, W. L.; Tang, Y. B. Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 2020, 8, nwaa178.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang, Z.; Luo, P. F.; Wu, Q. B.; Zheng, H. H. Constructing one-dimensional mesoporous carbon nanofibers loaded with NaTi2(PO4)3 nanodots as novel anodes for sodium energy storage. J. Phys. Chem. Solids 2022, 161, 110479.

    Article  CAS  Google Scholar 

  25. Li, H.; Chen, J.; Fang, J. Recent advances in wearable aqueous metal-air batteries: From configuration design to materials fabrication. Adv. Mater. Technol. 2023, 8, 2201762.

    Article  CAS  Google Scholar 

  26. Liu, Q. C.; Chang, Z. W.; Li, Z. J.; Zhang, X. B. Flexible metal-air batteries: Progress, challenges, and perspectives. Small Methods 2018, 2, 1700231.

    Article  Google Scholar 

  27. Agarwal, A.; Hussain, C. M. Metal-air batteries for wearable electronics: A case study for modern society. In Concepts in Smart Societies; Hussain, C.; Petrillo, A.; Ul Islam, S., Eds.; CRC Press: Boca Raton, 2023; pp 298–312.

    Chapter  Google Scholar 

  28. Wang, L.; Jiang, Y.; Li, S. Y.; Chen, X. H.; Xi, F. S.; Wan, X. H.; Ma, W. H.; Deng, R. Scalable synthesis of N-doped Si/G@voids@C with porous structures for high-performance anode of lithium-ion batteries. Rare Met. 2023, 42, 4091–4102.

    Article  CAS  Google Scholar 

  29. Wei, T.; Zhou, Y. Y.; Sun, C.; Guo, X. T.; Xu, S. D.; Chen, D. F.; Tang, Y. F. An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Res. 2024, 17, 2763–2769

    Article  CAS  Google Scholar 

  30. Wang, C. F.; He, T.; Cheng, J. L.; Guan, Q.; Wang, B. Bioinspired interface design of sewable, weavable, and washable fiber zinc batteries for wearable power textiles. Adv. Funct. Mater. 2020, 30, 2004430.

    Article  CAS  Google Scholar 

  31. Zhang, J.; Zhou, Q. X.; Tang, Y. W.; Zhang, L.; Li, Y. G. Zinc-air batteries: Are they ready for prime time. Chem. Sci. 2019, 10, 8924–8929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, X. H.; Li, S. M.; Ye, D. W.; Kuang, J. Q.; Guo, S.; Zou, Y. Y.; Cai, X. Integrated bifunctional oeygen electrodes for flexible zinc-air batteries: From electrode designing to wearable energy storage. Adv. Mater. Technol. 2022, 7, 2100673.

    Article  CAS  Google Scholar 

  33. Smee, A. LIII. On the galvanic properties of the metallic elementary bodies, with a description of a new chemico-mechanical battery. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1840, 16, 315–321.

    Article  Google Scholar 

  34. Maiche, L. FrenchPat. 1878, 127, 69.

    Google Scholar 

  35. Heise, G. W. Air-depolarized primary battery. U.S. Patent 1899615A, February 28, 1933.

  36. Mainar, A. R.; Colmenares, L. C.; Blázquez, J. A.; Urdampilleta, I. A brief overview of secondary zinc anode development: The key of improving zinc-based energy storage systems. Int. J. Energy Res. 2018, 42, 903–918.

    Article  Google Scholar 

  37. Crabb, R. L.; Treble, F. C. Thin silicon solar cells for large flexible arrays. Nature 1967, 213, 1223–1224.

    Article  Google Scholar 

  38. Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly (ethylene oxide). Polymer 1973, 14, 589.

    Article  CAS  Google Scholar 

  39. Li, H. F.; Ma, L. T.; Han, C. P.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zhi, C. Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550–587.

    Article  Google Scholar 

  40. Park, J.; Park, M.; Nam, G.; Lee, J. S.; Cho, J. All-solid-state cable-type flexible zinc-air battery. Adv. Mater. 2015, 27, 1396–1401.

    Article  CAS  PubMed  Google Scholar 

  41. Zarrin, H.; Sy, S.; Fu, J.; Jiang, G. P.; Kang, K.; Jun, Y. S.; Yu, A. P.; Fowler, M.; Chen, Z. W. Molecular functionalization of graphene oxide for next-generation wearable electronics. ACS Appl. Mater. Interfaces 2016, 8, 25428–25437.

    Article  CAS  PubMed  Google Scholar 

  42. Ma, L. T.; Chen, S. M.; Wang, D. H.; Yang, Q.; Mo, F. N.; Liang, G. J.; Li, N.; Zhang, H. Y.; Zapien, J. A.; Zhi, C. Y. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 2019, 9, 1803046.

    Article  Google Scholar 

  43. Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

    Article  CAS  PubMed  Google Scholar 

  44. Koo, J. H.; Kim, D. C.; Shim, H. J.; Kim, T. H.; Kim, D. H. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration. Adv. Funct. Mater. 2018, 28, 1801834.

    Article  Google Scholar 

  45. Kwon, J. H.; Jeon, Y.; Choi, S.; Park, J. W.; Kim, H.; Choi, K. C. Functional design of highly robust and flexible thin-film encapsulation composed of quasi-perfect sublayers for transparent, flexible displays. ACS Appl. Mater. Interfaces 2017, 9, 43983–43992.

    Article  CAS  PubMed  Google Scholar 

  46. Lee, S. M.; Kwon, J. H.; Kwon, S.; Choi, K. C. A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron Devices 2017, 64, 1922–1931.

    Article  CAS  Google Scholar 

  47. Acar, G.; Ozturk, O.; Golparvar, A. J.; Elboshra, T. A.; Böhringer, K.; Yapici, M. K. Wearable and flexible textile electrodes for biopotential signal monitoring: A review. Electronics 2019, 8, 479.

    Article  CAS  Google Scholar 

  48. Ma, L. Y.; Wu, R. H.; Patil, A.; Zhu, S. H.; Meng, Z. H.; Meng, H. Q.; Hou, C.; Zhang, Y. F.; Liu, Q.; Yu, R. et al. Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 2019, 29, 1904549.

    Article  CAS  Google Scholar 

  49. Wang, L.; Fu, X. M.; He, J. Q.; Shi, X.; Chen, T. Q.; Chen, P. N.; Wang, B. J.; Peng, H. S. Application challenges in fiber and textile electronics. Adv. Mater. 2020, 32, 1901971.

    Article  CAS  Google Scholar 

  50. Heng, W. Z.; Solomon, S.; Gao, W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv. Mater. 2022, 34, 2107902.

    Article  CAS  Google Scholar 

  51. Xie, M. Y.; Hisano, K.; Zhu, M. Z.; Toyoshi, T.; Pan, M.; Okada, S.; Tsutsumi, O.; Kawamura, S.; Bowen, C. Flexible multifunctional sensors for wearable and robotic applications. Adv. Mater. Technol. 2019, 4, 1800626.

    Article  Google Scholar 

  52. Park, H. L.; Lee, Y.; Kim, N.; Seo, D. G.; Go, G. T.; Lee, T. W. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 2020, 32, 1903558.

    Article  CAS  Google Scholar 

  53. Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491.

    Article  CAS  PubMed  Google Scholar 

  54. Pang, Q.; Lou, D.; Li, S. J.; Wang, G. M.; Qiao, B. B.; Dong, S. R.; Ma, L.; Gao, C. Y.; Wu, Z. H. Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv. Sci. 2020, 7, 1902673.

    Article  CAS  Google Scholar 

  55. Han, S. T.; Peng, H. Y.; Sun, Q. J.; Venkatesh, S.; Chung, K. S.; Lau, S. C.; Zhou, Y.; Roy, V. A. L. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375.

    Article  Google Scholar 

  56. Xu, F. L.; Li, X. Y.; Shi, Y.; Li, L. H.; Wang, W.; He, L.; Liu, R. P. Recent developments for flexible pressure sensors: A review. Micromachines 2018, 9, 580.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Singh, E.; Meyyappan, M.; Nalwa, H. S. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 2017, 9, 34544–34586.

    Article  CAS  PubMed  Google Scholar 

  58. Hashemi, S. A.; Ramakrishna, S.; Aberle, A. G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743.

    Article  CAS  Google Scholar 

  59. Chang, C.; Nie, X.; Li, X. X.; Tao, P.; Fu, B. W.; Wang, Z. Y.; Xu, J. L.; Ye, Q. X.; Zhang, J. Y.; Song, C. Y. et al. Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials. J. Mater. Chem. A 2020, 8, 20970–20978.

    Article  CAS  Google Scholar 

  60. Dong, P.; Rodrigues, M. T. F.; Zhang, J.; Borges, R. S.; Kalaga, K.; Reddy, A. L. M.; Silva, G. G.; Ajayan, P. M.; Lou, J. A flexible solar cell/supercapacitor integrated energy device. Nano Energy 2017, 42, 181–186.

    Article  CAS  Google Scholar 

  61. Pei, Z. X.; Ding, L. Y.; Wang, C.; Meng, Q. Q.; Yuan, Z. W.; Zhou, Z.; Zhao, S. L.; Chen, Y. Make it stereoscopic: Interfacial design for full-temperature adaptive flexible zinc-air batteries. Energy Environ. Sci. 2021, 14, 4926–4935.

    Article  CAS  Google Scholar 

  62. Liu, H. R.; Xie, W.; Huang, Z. Y.; Yao, C. H.; Han, Y. H.; Huang, W. Recent advances in flexible Zn-air batteries: Materials for electrodes and electrolytes. Small Methods 2022, 6, 2101116.

    Article  CAS  Google Scholar 

  63. Wang, N.; Ning, S. L.; Yu, X. L.; Chen, D.; Li, Z. L.; Xu, J. C.; Meng, H.; Zhao, D. K.; Li, L. G.; Liu, Q. M. et al. Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott-Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc-air batteries. Appl. Catal. B: Environ. 2022, 302, 120838.

    Article  CAS  Google Scholar 

  64. Zhang, P.; Wang, K.; Pei, P.; Zuo, Y.; Wei, M.; Liu, X.; Xiao, Y.; Xiong, J. Selection of hydrogel electrolytes for flexible zinc-air batteries. Mater. Today Chem. 2021, 21, 100538.

    Article  CAS  Google Scholar 

  65. Dou, H. Z.; Xu, M.; Zheng, Y.; Li, Z. Q.; Wen, G. B.; Zhang, Z.; Yang, L. X.; Ma, Q. Y.; Yu, A. P.; Luo, D. et al. Bioinspired tough solid-state electrolyte for flexible ultralong-life zinc-air battery. Adv. Mater. 2022, 34, 2110585.

    Article  CAS  Google Scholar 

  66. Wang, Z. Q.; Meng, X. Y.; Wu, Z. Q.; Mitra, S. Development of flexible zinc-air battery with nanocomposite electrodes and a novel separator. J. Energy Chem. 2017, 26, 129–138.

    Article  Google Scholar 

  67. Yang, M. M.; Shu, X. X.; Pan, W.; Zhang, J. T. Toward flexible zinc-air batteries with self-supported air electrodes. Small 2021, 17, 2006773.

    Article  CAS  Google Scholar 

  68. Wang, X. X.; Yang, X. X.; Liu, H.; Han, T.; Hu, J. H.; Li, H. B.; Wu, G. Air electrodes for flexible and rechargeable Zn-air batteries. Small Struct. 2022, 3, 2100103.

    Article  CAS  Google Scholar 

  69. Fan, X. Y.; Liu, J.; Song, Z. S.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries. Nano Energy 2019, 56, 454–462.

    Article  CAS  Google Scholar 

  70. Chen, Z. Y.; Yang, X.; Li, W. Q.; Liang, X. G.; Guo, J. M.; Li, H. H.; He, Y.; Kim, Y. Nanofiber composite for improved water retention and dendrites suppression in flexible zinc-air batteries. Small 2021, 17, 2103048.

    Article  CAS  Google Scholar 

  71. Song, Z. S.; Ding, J.; Liu, B.; Liu, X. R.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Zhong, C. A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier. Adv. Mater. 2020, 32, 1908127.

    Article  CAS  Google Scholar 

  72. Xu, N. N.; Zhang, Y. X.; Wang, M.; Fan, X. J.; Zhang, T.; Peng, L. W.; Zhou, X. D.; Qiao, J. L. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane. Nano Energy 2019, 65, 104021.

    Article  CAS  Google Scholar 

  73. Zhou, T. P.; Xu, W. F.; Zhang, N.; Du, Z. Y.; Zhong, C. A.; Yan, W. S.; Ju, H. X.; Chu, W. S.; Jiang, H.; Wu, C. Z. et al. Ultrathin cobalt oxide layers as electrocatalysts for high-performance flexible Zn-air batteries. Adv. Mater. 2019, 31, 1807468.

    Article  Google Scholar 

  74. Wang, H. F.; Tang, C.; Wang, B.; Li, B. Q.; Cui, X. Y.; Zhang, Q. Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc-air batteries. Energy Stor. Mater. 2018, 15, 124–130.

    Google Scholar 

  75. Huang, S. W.; Li, H.; Pei, P. C.; Wang, K. L.; Xiao, Y.; Zhang, C.; Chen, C. A dendrite-resistant zinc-air battery. iScience 2020, 23, 101169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jiao, M. L.; Dai, L. X.; Ren, H. R.; Zhang, M. T.; Xiao, X.; Wang, B. R.; Yang, J. L.; Liu, B. L.; Zhou, G. M.; Cheng, H. M. A polarized gel electrolyte for wide-temperature flexible zinc-air batteries. Angew. Chem. 2023, 135, e202301114.

    Article  Google Scholar 

  77. Hui, X. B.; Zhang, P.; Li, J. F.; Zhao, D. Y.; Li, Z. Q.; Zhang, Z. W.; Wang, C. X.; Wang, R. T.; Yin, L. W. In situ integrating highly ionic conductive LDH-array@PVA gel electrolyte and mXene/Zn anode for dendrite-free high-performance flexible Zn-air batteries. Adv. Energy Mater. 2022, 12, 2201393

    Article  CAS  Google Scholar 

  78. Guan, Q.; Li, Y. P.; Bi, X. X.; Yang, J.; Zhou, J. W.; Li, X. L.; Cheng, J. L.; Wang, Z. P.; Wang, B.; Lu, J. Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air. Adv. Energy Mater. 2019, 9, 1901434.

    Article  CAS  Google Scholar 

  79. Hosseini, S.; Soltani, S. M.; Li, Y. Y. Current status and technical challenges of electrolytes in zinc-air batteries: An in-depth review. Chem. Eng. J. 2021, 408, 127241.

    Article  CAS  Google Scholar 

  80. Liu, X. R.; Fan, X. Y.; Liu, B.; Ding, J.; Deng, Y. D.; Han, X. P.; Zhong, C.; Hu, W. B. Mapping the design of electrolyte materials for electrically rechargeable zinc-air batteries. Adv. Mater. 2021, 33, 2006461.

    Article  CAS  Google Scholar 

  81. Lu, C. Y.; Ren, R. Z.; Zhu, Z. W.; Pan, G.; Wang, G. G.; Xu, C. M.; Qiao, J. S.; Sun, W.; Huang, Q. G.; Liang, H. R. et al. BaCo0.4Fe0.4Nb0.1Sc0.1O3−δ perovskite oxide with super hydration capacity for a high-activity proton ceramic electrolytic cell oxygen electrode. Chem. Eng. J. 2023, 472, 144878.

    Article  CAS  Google Scholar 

  82. Cai, X. Y.; Li, X. D.; You, J. B.; Yang, F.; Shadike, Z.; Qin, S.; Luo, L. X.; Guo, Y. G.; Yan, X. H.; Shen, S. Y. et al. Lithiummediated ammonia electrosynthesis with ether-based electrolytes. J. Am. Chem. Soc. 2023, 145, 25716–25725.

    Article  CAS  PubMed  Google Scholar 

  83. Liu, Q. Q.; Liu, R. T.; He, C. H.; Xia, C. F.; Guo, W.; Xu, Z. L.; Xia, B. Y. Advanced polymer-based electrolytes in zinc-air batteries. eScience 2022, 2, 453–466.

    Article  Google Scholar 

  84. Clark, S.; Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Blázquez, J. A.; Tolchard, J. R.; Latz, A.; Horstmann, B. Towards rechargeable zinc-air batteries with aqueous chloride electrolytes. J. Mater. Chem. A 2019, 7, 11387–11399.

    Article  CAS  Google Scholar 

  85. Yi, J.; Liang, P. C.; Liu, X. Y.; Wu, K.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries. Energy Environ. Sci. 2018, 11, 3075–3095.

    Article  CAS  Google Scholar 

  86. Zhao, Z. Q.; Fan, X. Y.; Ding, J.; Hu, W. B.; Zhong, C.; Lu, J. Challenges in zinc electrodes for alkaline zinc-air batteries: Obstacles to commercialization. ACS Energy Lett. 2019, 4, 2259–2270.

    Article  CAS  Google Scholar 

  87. Xu, W. W.; Lu, Z. Y.; Zhang, T. Y.; Zhong, Y. R.; Wu, Y. S.; Zhang, G. X.; Liu, J. F.; Wang, H. L.; Sun, X. M. An advanced zinc air battery with nanostructured superwetting electrodes. Energy Stor. Mater. 2019, 17, 358–365.

    Google Scholar 

  88. Yu, H. M.; Chen, D. P.; Ni, X. Y.; Qing, P.; Yan, C. S.; Wei, W. F.; Ma, J. M.; Ji, X. B.; Chen, Y. J.; Chen, L. B. Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energy Environ. Sci. 2023, 16, 2684–2695.

    Article  CAS  Google Scholar 

  89. Fan, X. S.; Tan, B. H.; Li, Z. B.; Loh, X. J. Control of PLA stereoisomers-based polyurethane elastomers as highly efficient shape memory materials. ACS Sustain. Chem. Eng. 2017, 5, 1217–1227.

    Article  CAS  Google Scholar 

  90. Wang, S. X.; Ong, P. J.; Liu, S. L.; Thitsartarn, W.; Tan, M. J. B. H.; Suwardi, A.; Zhu, Q.; Loh, X. J. Recent advances in host–guest supramolecular hydrogels for biomedical applications. Chem.—Asian J. 2022, 17, e202200608.

    Article  CAS  PubMed  Google Scholar 

  91. Wang, S. X.; Wu, W. Y.; Yeo, J. C. C.; Soo, X. Y. D.; Thitsartarn, W.; Liu, S. L.; Tan, B. H.; Suwardi, A.; Li, Z. B.; Zhu, Q. et al. Responsive hydrogel dressings for intelligent wound management. BMEMat 2023, 1, e12021.

    Article  Google Scholar 

  92. Zhu, H. J.; Qiang, J. M. J.; Wang, C. G.; Chan, C. Y.; Zhu, Q.; Ye, E. Y.; Li, Z. B.; Loh, X. J. Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact. Mater. 2022, 18, 471–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, J. K.; Liu, B.; Fan, X. Y.; Ding, J.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Zhong, C. Carbon- based cathode materials for rechargeable zinc-air batteries: From current collectors to bifunctional integrated air electrodes. Carbon Energy 2020, 22, 370–386.

    Article  Google Scholar 

  94. Liu, S. S.; Wang, M. F.; Sun, X. Y.; Xu, N.; Liu, J.; Wang, Y. Z.; Qian, T.; Yan, C. L. Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc-air batteries. Adv. Mater. 2018, 30, 1704898.

    Article  Google Scholar 

  95. Yang, X.; Liu, K. J.; Han, X. Y.; Xu, J. H.; Bian, M. Y.; Zheng, D. Y.; Xie, H. J.; Zhang, Y. B.; Yang, X. G. Transformation of waste battery cathode material LiMn2O4 into efficient ultra-low temperature NH3-SCR catalyst: Proton exchange synergistic vanadium modification. J. Hazard. Mater. 2023, 459, 132209.

    Article  CAS  PubMed  Google Scholar 

  96. Cheng, Y. T.; Wu, H. F.; Han, J. H.; Zhong, S. Y.; Huang, S. H.; Chu, S. F.; Song, S. X.; Reddy, K. M.; Wang, X. D.; Wu, S. Y. et al. Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc-air batteries. Nanoscale 2021, 13, 10862–10870.

    Article  CAS  PubMed  Google Scholar 

  97. Yu, J. Y.; Chen, F. Y.; Tang, Q.; Gebremariam, T. T.; Wang, J. L.; Gong, X. F.; Wang, X. L. Ag- modified Cu foams as three-dimensional anodes for rechargeable zinc-air batteries. ACS Appl. Nano Mater. 2019, 2, 2679–2688.

    Article  CAS  Google Scholar 

  98. Hyun, S.; Shanmugam, S. Hierarchical nickel-cobalt dichalcogenide nanostructure as an efficient electrocatalyst for oxygen evolution reaction and a Zn-air battery. ACS Omega 2018, 3, 8621–8630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lang, X. L.; Hu, Z. B.; Wang, C. Y. Bifunctional air electrodes for flexible rechargeable Zn-air batteries. Chin. Chem. Lett. 2021, 32, 999–1009.

    Article  CAS  Google Scholar 

  100. Jia, B. E.; Thang, A. Q.; Yan, C. S.; Liu, C. T.; Lv, C. D.; Zhu, Q.; Xu, J. W.; Chen, J.; Pan, H. G.; Yan, Q. Y. Rechargeable aqueous aluminum-ion battery: Progress and outlook. Small 2022, 18, 2107773.

    Article  CAS  Google Scholar 

  101. Shi, Y.; Lee, C.; Tan, X. Y.; Yang, L.; Zhu, Q.; Loh, X.; Xu, J. W.; Yan, Q. Y. Atomic- level metal electrodeposition: Synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion. Small Structures 2022, 3, 2100185.

    Article  CAS  Google Scholar 

  102. Caramia, V.; Bozzini, B. Materials science aspects of zinc-air batteries: A review. Mater. Renew. Sustain. Energy 2014, 3, 28.

    Article  Google Scholar 

  103. Liu, Q. F.; Pan, Z. F.; Wang, E. D.; An, L.; Sun, G. Q. Aqueous metal-air batteries: Fundamentals and applications. Energy Stor. Mater. 2020, 27, 478–505.

    Google Scholar 

  104. Lee, J. J. C.; Sugiarto, S.; Ong, P. J.; Soo, X. Y. D.; Ni, X. P.; Luo, P.; Hnin, Y. Y. K.; See, J. S. Y.; Wei, F. X.; Zheng, R. Y. et al. Lignin-g-polycaprolactone as a form-stable phase change material for thermal energy storage application. J. Energy Storage 2022, 56, 106118.

    Article  Google Scholar 

  105. Ong, P. J.; Leow, Y.; Soo, X. Y. D.; Chua, M. H.; Ni, X. P.; Suwardi, A.; Tan, C. K. I.; Zheng, R. Y.; Wei, F. X.; Xu, J. W. et al. Valorization of spent coffee grounds: A sustainable resource for Bio-based phase change materials for thermal energy storage. Waste Manage. 2023, 157, 339–347.

    Article  Google Scholar 

  106. Ong, P. J.; Lum, Y. Y.; Soo, X. Y. D.; Wang, S. X.; Wang, P.; Chi, D. Z.; Liu, H. F.; Kai, D.; Lee, C. L. K.; Yan, Q. Y. et al. Integration of phase change material and thermal insulation material as a passive strategy for building cooling in the tropics. Constr. Build. Mater. 2023, 386, 131583.

    Article  CAS  Google Scholar 

  107. Soo, X. Y. D.; Png, Z. M.; Chua, M. H.; Yeo, J. C. C.; Ong, P. J.; Wang, S. X.; Wang, X. Z.; Suwardi, A.; Cao, J.; Chen, Y. J. et al. A highly flexible form-stable silicone-octadecane PCM composite for heat harvesting. Mater. Today Adv. 2022, 14, 100227.

    Article  CAS  Google Scholar 

  108. Ong, P. J.; Heng, Z. X. J.; Xing, Z. X.; Ko, H. Y. Y.; Wang, P.; Liu, H. F.; Ji, R.; Wang, X. Z.; Tan, B. H.; Li, Z. B. et al. Wax from pyrolysis of waste plastics as a potential source of phase change material for thermal energy storage. Trans. Tianjin Univ. 2023, 29, 225–234.

    Article  CAS  Google Scholar 

  109. Lu, Q.; Zou, X. H.; Bu, Y. F. Introduction to zinc-air batteries. In Zinc-Air Batteries: Introduction, Design Principles and Emerging Technologies, Shao, Z. P.; Xu, X. M., Eds.; Wiley: Weinheim, 2022.

    Google Scholar 

  110. Li, Q. Y.; Wang, H.; Yu, H. M.; Fu, M.; Liu, W.; Zhao, Q. W.; Huang, S. Z.; Zhou, L. J.; Wei, W. F.; Ji, X. B. et al. Engineering an ultrathin and hydrophobic composite zinc anode with 24 µm thickness for high-performance Zn batteries. Adv. Funct. Mater. 2023, 33, 2303466.

    Article  CAS  Google Scholar 

  111. Yu, H. M.; Chen, D. P.; Li, Q. Y.; Yan, C. S.; Jiang, Z. H.; Zhou, L. J.; Wei, W. F.; Ma, J. M.; Ji, X. B.; Chen, Y. J. et al. In situ construction of anode-molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv. Energy Mater. 2023, 13, 2300550

    Article  CAS  Google Scholar 

  112. Jiang, Y; Deng, Y. P; Liang, R; Fu, J; Luo, D; Liu, G; Li, J; Zhang, Z; Hu, Y; Chen, Z. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn-air batteries. Adv. Energy Mater. 2019, 9, 1900911

    Article  Google Scholar 

  113. Zhang, Y. N.; Qin, H. L.; Alfred, M.; Ke, H. Z.; Cai, Y. B.; Wang, Q. Q.; Huang, F. L.; Liu, B.; Lv, P. F.; Wei, Q. F. Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to eetreme cold conditions. Energy Stor. Mater. 2021, 42, 88–96.

    CAS  Google Scholar 

  114. Pei, Z. X.; Yuan, Z. W.; Wang, C. J.; Zhao, S. L.; Fei, J. Y.; Wei, L.; Chen, J. S.; Wang, C.; Qi, R. J.; Liu, Z. W. et al. A flexible rechargeable zinc-air battery with eecellent low-temperature adaptability. Angew. Chem., Int. Ed. 2020, 59, 4793–4799.

    Article  CAS  Google Scholar 

  115. Zhang, Y. A.; Chen, Y. J.; Alfred, M.; Huang, F. L.; Liao, S. Q.; Chen, D. S.; Li, D. W.; Wei, Q. F. Alkaline sodium polyacrylate-starch hydrogels with tolerance to cold conditions for stretchable zinc-air batteries. Compos. Part B: Eng. 2021, 224, 109228.

    Article  CAS  Google Scholar 

  116. Cao, Z. Q.; Hu, H. B.; Wu, M. Z.; Tang, K.; Jiang, T. T. Planar all-solid-state rechargeable Zn-air batteries for compact wearable energy storage. J. Mater. Chem. A 2019, 7, 17581–17593.

    Article  CAS  Google Scholar 

  117. Feng, X. B.; Sun, L. W.; Wang, W.; Zhao, Y. Z.; Shi, J. W. Construction of CdS@ZnO core-shell nanorod arrays by atomic layer deposition for efficient photoelectrochemical H2 evolution. Sep. Purif. Technol. 2023, 324, 124520.

    Article  CAS  Google Scholar 

  118. Zuo, Y. Y.; Wang, K. L.; Wei, M. H.; Zhao, S. Y.; Zhang, P. F.; Pei, P. C. Starch gel for flexible rechargeable zinc-air batteries. Cell Rep. Phys. Sci. 2022, 3, 100687.

    Article  CAS  Google Scholar 

  119. Shi, X.; Zuo, Y.; Zhai, P.; Shen, J. H.; Yang, Y. Y. W.; Gao, Z.; Liao, M.; Wu, J. X.; Wang, J. W.; Xu, X. J. et al. Large-area display textiles integrated with functional systems. Nature 2021, 591, 240–245.

    Article  CAS  PubMed  Google Scholar 

  120. Nishide, H.; Oyaizu, K. Toward flexible batteries. Science 2008, 319, 737–738.

    Article  CAS  PubMed  Google Scholar 

  121. Park, S.; Heo, S. W.; Lee, W.; Inoue, D.; Jiang, Z.; Yu, K.; Jinno, H.; Hashizume, D.; Sekino, M.; Yokota, T. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018, 561, 516–521.

    Article  CAS  PubMed  Google Scholar 

  122. Liu, M. T.; Chen, Y.; Zhu, Q.; Tao, J. J.; Tang, C. M.; Ruan, H. J.; Wu, Y. L.; Loh, X. J. Antioxidant thermogelling formulation for burn wound healing. Chem.—Asian J. 2022, 17, e202200396.

    Article  CAS  PubMed  Google Scholar 

  123. Lambert, H.; Castillo Bonillo, A.; Zhu, Q.; Zhang, Y. W.; Lee, T. C. Supramolecular gating of guest release from cucurbit[7]uril using de novo design. npj Comput. Mater. 2022, 8, 21.

    Article  CAS  Google Scholar 

  124. Chen, R.; Xu, X. B.; Peng, S. Y.; Chen, J. M.; Yu, D. F.; Xiao, C. H.; Li, Y. L.; Chen, Y. T.; Hu, X. F.; Liu, M. J. et al. A flexible and safe aqueous zinc-air battery with a wide operating temperature range from −20 to 70 °C. ACS Sustain. Chem. Eng. 2020, 8, 11501–11511.

    Article  CAS  Google Scholar 

  125. Wang, M. F.; Qian, T.; Liu, S. S.; Zhou, J. Q.; Yan, C. L. Unprecedented activity of bifunctional electrocatalyst for high power density aqueous zinc-air batteries. ACS Appl. Mater. Interfaces 2017, 9, 21216–21224.

    Article  CAS  PubMed  Google Scholar 

  126. Chen, X.; Liu, B.; Zhong, C.; Liu, Z.; Liu, J.; Ma, L.; Deng, Y. D.; Han, X. P.; Wu, T. P.; Hu, W. B. et al. Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display. Adv. Energy Mater. 2017, 7, 1700779.

    Article  Google Scholar 

  127. Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.

    Article  CAS  PubMed  Google Scholar 

  128. Wang, Z. Y.; Fu, W. Q.; Hu, L. Y.; Zhao, M.; Guo, T. J.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Improvement of electron transfer efficiency during denitrification process by Fe-Pd/multi-walled carbon nanotubes: Possessed redoe characteristics and secreted endogenous electron mediator. Sci. Total Environ. 2021, 781, 146686.

    Article  CAS  Google Scholar 

  129. Wu, Y.; Wu, H. F.; Zhao, Y.; Jiang, G. Y.; Shi, J. T.; Guo, C. J.; Liu, P.; Jin, Z. J. Metastable structures with composition fluctuation in cuprate superconducting films grown by transient liquid-phase assisted ultra-fast heteroepitaey. Mater. Today Nano 2023, 24, 100429.

    Article  CAS  Google Scholar 

  130. Lu, Y. G.; Stegmaier, M.; Nukala, P.; Giambra, M. A.; Ferrari, S.; Busacca, A.; Pernice, W. H. P.; Agarwal, R. Mieed-mode operation of hybrid phase-change nanophotonic circuits. Nano Lett. 2017, 17, 150–155.

    Article  CAS  PubMed  Google Scholar 

  131. Fan, X. Y.; Zhong, C.; Liu, J.; Ding, J.; Deng, Y. D.; Han, X. P.; Zhang, L.; Hu, W. B.; Wilkinson, D. P.; Zhang, J. J. Opportunities of flexible and portable electrochemical devices for energy storage: Eepanding the spotlight onto semi-solid/solid electrolytes. Chem. Rev. 2022, 122, 17155–17239.

    Article  CAS  PubMed  Google Scholar 

  132. Xu, M.; Dou, H. Z.; Zhang, Z.; Zheng, Y.; Ren, B. H.; Ma, Q. T.; Wen, G. B.; Luo, D.; Yu, A. P.; Zhang, L. H. et al. Hierarchically nanostructured solid-state electrolyte for flexible rechargeable zinc-air batteries. Angew. Chem. 2022, 134, e202117703.

    Article  Google Scholar 

  133. Fan, X. Y.; Wang, H. Z.; Liu, X. R.; Liu, J.; Zhao, N. Q.; Zhong, C.; Hu, W. B.; Lu, J. Functionalized nanocomposite gel polymer electrolyte with strong alkaline-tolerance and high zinc anode stability for ultralong-life flexible zinc-air batteries. Adv. Mater. 2023, 35, 2209290.

    Article  CAS  Google Scholar 

  134. Zhang, G. T.; Cai, X. X.; Li, C.; Yao, J. S.; Liu, W. L.; Qiao, C. D.; Li, G. D.; Wang, Q.; Han, J. J. Construction of alkaline gel polymer electrolytes with a double cross-linked network for flexible zinc-air batteries. ACS Appl. Polym. Mater. 2023, 5, 3622–3631.

    Article  CAS  Google Scholar 

  135. Song, Z. S.; Liu, X. R.; Ding, J.; Liu, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Poly(acrylic acid)-based composite gel polymer electrolytes with high mechanical strength and ionic conductivity toward flexible zinc-air batteries with long cycling lifetime. ACS Appl. Mater. Interfaces 2022, 14, 49801–49810.

    Article  CAS  Google Scholar 

  136. Zhang, Y. N.; Wu, D. S.; Huang, F. L.; Cai, Y. B.; Li, Y. G.; Ke, H. Z.; Lv, P. F.; Wei, Q. F. “Water-in-salt” nonalkaline gel polymer electrolytes enable flexible zinc-air batteries with ultra-long operating time. Adv. Funct. Mater. 2022, 32, 2203204.

    Article  CAS  Google Scholar 

  137. Li, M.; Liu, B.; Fan, X. Y.; Liu, X. R.; Liu, J.; Ding, J.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Zhong, C. Long-shelf- life polymer electrolyte based on tetraethylammonium hydroxide for flexible zinc-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 28909–28917.

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, P. F.; Wang, K. L.; Zuo, Y. Y.; Wei, M. H.; Wang, H. W.; Chen, Z.; Shang, N.; Pei, P. C. Enhanced copolymer gel modified by dual surfactants for flexible zinc-air batteries. ACS Appl. Mater. Interfaces 2022, 14, 49109–49118.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, P. F.; Wang, K. L.; Zuo, Y. Y.; Wei, M. H.; Wang, H. W.; Chen, Z.; Shang, N.; Pei, P. C. A self-designed double cross-linked gel for flexible zinc-air battery with eetreme conditions adaptability. Chem. Eng. J. 2023, 451, 138622.

    Article  CAS  Google Scholar 

  140. Shang, N; Wang, K. L.; Wei, M. H.; Zuo, Y. Y.; Zhang, P. F.; Wang, H. W.; Chen, Z; Zhong, D. Y.; Pei, P. C. Quasi-liquid gel electrolyte for enhanced flexible Zn-Air batteries. Adv. Funct. Mater 2023, 33, 2303719

    Article  CAS  Google Scholar 

  141. Fan, X. Y.; Zhang, R.; Sui, S. M.; Liu, X. R.; Liu, J.; Shi, C. S.; Zhao, N. Q.; Zhong, C.; Hu, W. B. Starch- based superabsorbent hydrogel with high electrolyte retention capability and synergistic interface engineering for long-lifespan flexible zinc-air batteries. Angew. Chem., Int. Ed. 2023, 62, e202302640.

    Article  CAS  Google Scholar 

  142. Chen, Z. H.; Jin, J. H.; Yang, S. L.; Li, G.; Zhang, J. J. Enhanced semi-interpenetrating network quasi-solid electrolytes modified by hollow porous nanofibers for flexible zinc-air batteries. ACS Sustain. Chem. Eng. 2023, 11, 10391–10401.

    Article  CAS  Google Scholar 

  143. Jia, X. L.; Ma, J. L.; Zhang, C. F.; Zhang, Z. K.; Fu, L. X.; Wang, G. X. Gel polymer electrolyte with alkaline aquatic colloidal graphene for flexible and rechargeable zinc air batteries. Electrochim. Acta 2023, 448, 142195.

    Article  CAS  Google Scholar 

  144. Qu, S. X.; Liu, B.; Wu, J. K.; Zhao, Z. Q.; Liu, J.; Ding, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Kirigami- inspired flexible and stretchable zinc-air battery based on metal-coated sponge electrodes. ACS Appl. Mater. Interfaces 2020, 12, 54833–54841.

    Article  CAS  PubMed  Google Scholar 

  145. Zhao, S. Y.; Xia, D. W.; Li, M. H.; Cheng, D. Y.; Wang, K. L.; Meng, Y. S.; Chen, Z.; Bae, J. Self-healing and anti-CO2 hydrogels for flexible solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 12033–12041.

    Article  CAS  PubMed  Google Scholar 

  146. Zhao, S. Y.; Liu, T.; Dai, Y. W.; Wang, Y.; Guo, Z. J.; Zhai, S.; Yu, J.; Zhi, C. Y.; Ni, M. All-in- one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries. Chem. Eng. J. 2022, 430, 132718.

    Article  CAS  Google Scholar 

  147. Zhang, Y. A.; Chen, Y. J.; Li, X.; Alfred, M.; Li, D. W.; Huang, F. L.; Wei, Q. F. Bacterial cellulose hydrogel: A promising electrolyte for flexible zinc-air batteries. J. Power Sources 2021, 482, 228963

    Article  CAS  Google Scholar 

  148. Zhao, N. N.; Wu, F.; Xing, Y.; Qu, W. J.; Chen, N.; Shang, Y. X.; Yan, M. X.; Li, Y. J.; Li, L.; Chen, R. J. Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 15537–15542.

    Article  CAS  PubMed  Google Scholar 

  149. Yang, Y.; Wang, T.; Guo, Y.; Liu, P. G.; Han, X. F.; Wu, D. L. Agar-PVA/GO double network gel electrolyte for high performance flexible zinc-air batteries. Mater. Today Chem. 2023, 29, 101384.

    Article  CAS  Google Scholar 

  150. Zuo, Y. Y.; Wang, K. L.; Wei, M. H.; Zhang, P. F.; Zhao, S. Y.; Pei, P. C.; Wang, H. W.; Chen, Z.; Shang, N. An Agar gel modulation with melamine foam skeleton for flexible Zn-air batteries. Chem. Eng. J. 2023, 452, 139301.

    Article  CAS  Google Scholar 

  151. Xue, Y. C.; Zhou, H.; Wang, K. Y.; Zhu, H. X.; Zhuang, L. Z.; Xu, Z.; He, H. Tailoring of an ultralow temperature adaptive cellulose nanofiber-based flexible zinc-air battery with long cycle life. J. Mater. Chem. A 2022, 10, 22730–22741.

    Article  CAS  Google Scholar 

  152. Li, Z. Y.; Li, X.; Jiang, Y. F.; Ding, Q. J.; Han, W. J. Nanocellulose composite gel with high ionic conductivity and long service life for flexible zinc-air battery. Polym. Test. 2021, 104, 107380.

    Article  CAS  Google Scholar 

  153. Jiang, D. Q.; Wang, H. Y.; Wu, S.; Sun, X. Y.; Li, J. Flexible zinc-air battery with high energy efficiency and freezing tolerance enabled by DMSO-based organohydrogel electrolyte. Small Methods 2022, 6, 2101043.

    Article  CAS  Google Scholar 

  154. Lyu, J. Y.; Zhou, Q. Y.; Wang, H. F.; Xiao, Q.; Qiang, Z.; Li, X. P.; Wen, J.; Ye, C. H.; Zhu, M. F. Mechanically strong, freeze-resistant, and ionically conductive organohydrogels for flexible strain sensors and batteries. Adv. Sci. 2023, 10, 2206591.

    Article  CAS  Google Scholar 

  155. Zhong, X. W.; Zheng, Z. Y.; Xu, J. H.; Xiao, X.; Sun, C. B.; Zhang, M. T.; Ma, J. B.; Xu, B. M.; Yu, K.; Zhang, X. et al. Flexible zinc-air batteries with ampere-hour capacities and wide-temperature adaptabilities. Adv. Mater. 2023, 35, 2209980.

    Article  CAS  Google Scholar 

  156. Neo, W. T.; Ye, Q.; Chua, M. H.; Zhu, Q.; Xu, J. W. Solution-processable copolymers based on triphenylamine and 3,4-ethylenedioxythiophene: Facile synthesis and multielectrochromism. Macromol. Rapid Commun. 2020, 41, 2000156.

    Article  CAS  Google Scholar 

  157. Vo, T. P.; Chua, M. H.; Ang, S. J.; Chin, K. L. O.; Soo, X. Y. D.; Png, Z. M.; Tam, T. L. D.; Zhu, Q.; Procter, D. J.; Xu, J. W. Pyrrolo[3,4-c]pyridine-1,2-dione: A new electron acceptor for electrochromic conjugated polymers. Polym. Chem. 2022, 13, 6512–6524.

    Article  CAS  Google Scholar 

  158. Chua, M. H.; Toh, S. H. G.; Ong, P. J.; Png, Z. M.; Zhu, Q.; Xiong, S. X.; Xu, J. W. Towards modulating the colour hues of isoindigo-based electrochromic polymers through variation of thiophene-based donor groups. Polym. Chem. 2022, 13, 967–981.

    Article  CAS  Google Scholar 

  159. Long, L. Z.; Wang, S. J.; Xiao, M.; Meng, Y. Z. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069.

    Article  CAS  Google Scholar 

  160. Rase, D.; Illathvalappil, R.; Singh, H. D.; Shekhar, P.; Leo, L. S.; Chakraborty, D.; Haldar, S.; Shelke, A.; Ajithkumar, T. G.; Vaidhyanathan, R. Hydroxide ion-conducting viologen-bakelite organic frameworks for flexible solid-state zinc-air battery applications. Nanoscale Horiz. 2023, 8, 224–234.

    Article  CAS  PubMed  Google Scholar 

  161. Png, Z. M.; Soo, X. Y. D.; Chua, M. H.; Ong, P. J.; Xu, J. W.; Zhu, Q. Triazine derivatives as organic phase change materials with inherently low flammability. J. Mater. Chem. A 2022, 10, 3633–3641.

    Article  CAS  Google Scholar 

  162. Yong, X.; Wu, G.; Shi, W.; Wong, Z. M.; Deng, T. Q.; Zhu, Q.; Yang, X. P.; Wang, J. S.; Xu, J. W.; Yang, S. W. Theoretical search for high-performance thermoelectric donor-acceptor copolymers: The role of super-exchange couplings. J. Mater. Chem. A 2020, 8, 21852–21861.

    Article  CAS  Google Scholar 

  163. Soo, X. Y. D.; Png, Z. M.; Wang, X. Z.; Chua, M. H.; Ong, P. J.; Wang, S. X.; Li, Z. B.; Chi, D. Z.; Xu, J. W.; Loh, X. J. et al. Rapid UV-curable form-stable polyethylene-glycol-based phase change material. ACS Appl. Polym. Mater. 2022, 4, 2747–2756.

    Article  CAS  Google Scholar 

  164. Lee, J. J. C.; Lim, N. J. X.; Wang, P.; Liu, H. F.; Wang, S. X.; Lee, C. L. K.; Kai, D.; Wei, F. X.; Ji, R.; Tan, B. H. Silicon-containing additives in encapsulation of phase change materials for thermal energy storage. World Sci. Annu. Rev. Funct. Mater. 2023, 1, 2230007.

    Article  Google Scholar 

  165. Wu, W. Y.; Yeo, G. M. D.; Wang, S. X.; Liu, Z. Y.; Loh, X. J.; Zhu, Q. Recent progress in polyethylene-enhanced organic phase change composite materials for energy management. Chem.—Asian J. 2023, 18, e202300391.

    Article  CAS  PubMed  Google Scholar 

  166. Soo, X. Y.; Muiruri, J. K.; Yeo, J. C. C.; Png, Z. M.; Sng, A.; Xie, H. Q.; Ji, R.; Wang, S. X.; Liu, H. F.; Xu, J. W. et al. Polyethylene glycol/polylactic acid block co-polymers as solid-solid phase change materials. SmartMat 2023, 4, e1188.

    Article  CAS  Google Scholar 

  167. Tan, M. J.; Li, B.; Chee, P.; Ge, X. M.; Liu, Z. L.; Zong, Y.; Loh, X. J. Acrylamide- derived freestanding polymer gel electrolyte for flexible metal-air batteries. J. Power Sources 2018, 400, 566–571.

    Article  CAS  Google Scholar 

  168. Yuan, D.; Zhao, J.; Ren, H.; Chen, Y. Q.; Chua, R.; Jie, E. T. J.; Cai, Y.; Edison, E.; Manalastas, Jr. W.; Wong, M. W. et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. 2021, 133, 7289–7295.

    Article  Google Scholar 

  169. Zhu, Q.; Ong, P. J.; Goh, S. H. A.; Yeo, R. J.; Wang, S. X.; Liu, Z. Y.; Loh, X. J. Recent advances in graphene-based phase change composites for thermal energy storage and management. Nano Mater. Sci., in press, https://doi.org/10.1016/j.nanoms.2023.09.003.

  170. Soo, X. Y. D.; Tan, S. Y.; Cheong, A. K. H.; Xu, J. W.; Liu, Z. Y.; Loh, X. J.; Zhu, Q. Electrospun PEO/PEG fibers as potential flexible phase change materials for thermal energy regulation. Exploration 2024, 4, 20230016.

    Article  Google Scholar 

  171. Wang, X. Z.; Huang, X. H.; Wong, Z. M.; Suwardi, A.; Zheng, Y.; Wei, F. X.; Wang, S. J.; Tan, T. L.; Wu, G.; Zhu, Q. et al. Gallium-doped zinc oxide nanostructures for tunable transparent thermoelectric films. ACS Appl. Nano Mater. 2022, 5, 8631–8639.

    Article  CAS  Google Scholar 

  172. Liang, R. M.; Yang, X. C.; Yew, P. Y. M.; Sugiarto, S.; Zhu, Q.; Zhao, J. M.; Loh, X. J.; Zheng, L.; Kai, D. PLA-lignin nanofibers as antioxidant biomaterials for cartilage regeneration and osteoarthritis treatment. J. Nanobiotechnol. 2022, 20, 327.

    Article  CAS  Google Scholar 

  173. Wei, F. X.; Cheng, B. S.; Chew, L. T.; Lee, J. J.; Cheong, K. H.; Wu, J.; Zhu, Q.; Tan, C. C. Grain distribution characteristics and effect of diverse size distribution on the Hall-Petch relationship for additively manufactured metal alloys. J. Mater. Res. Technol. 2022, 20, 4130–4136.

    Article  CAS  Google Scholar 

  174. Lu, Y. Y.; Zhu, T. Y.; Xu, N. S.; Huang, K. A semisolid electrolyte for flexible Zn-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6904–6910.

    Article  CAS  Google Scholar 

  175. Wang, S. X.; Muiruri, J. K.; Soo, X. Y. D.; Liu, S. L.; Thitsartarn, W.; Tan, B. H.; Suwardi, A.; Li, Z. B.; Zhu, Q.; Loh, X. J. Bio-polypropylene and polypropylene-based biocomposites: Solutions for a sustainable future. Chem.—Asian J. 2023, 18, e202200972.

    Article  CAS  PubMed  Google Scholar 

  176. Muiruri, J. K.; Yeo, J. C. C.; Soo, X. Y. D.; Wang, S. X.; Liu, H. F.; Kong, J. H.; Cao, J.; Tan, B. H.; Suwardi, A.; Li, Z. B. et al. Recent advances of sustainable short-chain length polyhydroxyalkanoates (Scl-PHAs)-plant biomass composites. Eur. Polym. J. 2023, 187, 111882.

    Article  Google Scholar 

  177. Zhu, Q.; Yildirim, E.; Wang, X. Z.; Kyaw, A. K. K.; Tang, T.; Soo, X. Y. D.; Wong, Z. M.; Wu, G.; Yang, S. W.; Xu, J. W. Effect of substituents in sulfoxides on the enhancement of thermoelectric properties of PEDOT:PSS: Experimental and modelling evidence. Mol. Syst. Des. Eng. 2020, 5, 976–984.

    Article  CAS  Google Scholar 

  178. Bai, P.; Bazant, M. Z. Charge transfer kinetics at the solid–solid interface in porous electrodes. Nat. Commun. 2014, 5, 3585.

    Article  PubMed  Google Scholar 

  179. Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

    Article  Google Scholar 

  180. Yu, J.; Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries. Adv. Mater. 2020, 32, 1908488.

    Article  CAS  Google Scholar 

  181. Li, T. C.; Lim, Y. V.; Xie, X. S.; Li, X. L.; Li, G. J.; Fang, D. L.; Li, Y. F.; Ang, Y. S.; Ang, L. K.; Yang, H. Y. ZnSe modified zinc metal anodes: Toward enhanced zincophilicity and ionic diffusion. Small 2021, 17, 2101728.

    Article  CAS  Google Scholar 

  182. Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.

    Article  CAS  Google Scholar 

  183. Park, D. J.; Aremu, E. O.; Ryu, K. S. Bismuth oxide as an eecellent anode additive for inhibiting dendrite formation in zinc-air secondary batteries. Appl. Surf. Sci. 2018, 456, 507–514.

    Article  CAS  Google Scholar 

  184. Xiao, J. H.; Zhang, X. X.; Fan, H. Y.; Zhao, Y. X.; Su, Y.; Liu, H. W.; Li, X. Z.; Su, Y. P.; Yuan, H.; Pan, T. et al. Stable solid electrolyte interphase in situ formed on magnesium-metal anode by using a perfluorinated alkoxide-based all-magnesium salt electrolyte. Adv. Mater. 2022, 34, 2203783.

    Article  CAS  Google Scholar 

  185. Qin, Y.; Li, H. F.; Han, C. P.; Mo, F. N.; Wang, X. Chemical Welding of the electrode–electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries. Adv. Mater. 2022, 34, 2207118.

    Article  CAS  Google Scholar 

  186. Han, D. L.; Wu, S. C.; Zhang, S. W.; Deng, Y. Q.; Cui, C. J.; Zhang, L. N.; Long, Y.; Li, H.; Tao, Y.; Weng, Z. et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 2020, 16, 2001736.

    Article  CAS  Google Scholar 

  187. Peng, Y. M.; Lai, C. G.; Zhang, M.; Liu, X. B.; Yin, Y. H.; Li, Y. S.; Wu, Z. P. Zn- Sn alloy anode with repressible dendrite grown and meliorative corrosion resistance for Zn-air battery. J. Power Sources 2022, 526, 231173.

    Article  CAS  Google Scholar 

  188. Tang, K.; Fu, J. M.; Wu, M. Z.; Hua, T.; Liu, J.; Song, L.; Hu, H. B. Synergetic chemistry and interface engineering of hydrogel electrolyte to strengthen durability of solid-state Zn-air batteries. Small Methods 2022, 6, 2101276.

    Article  CAS  Google Scholar 

  189. Zhao, X. Q.; Fan, B. M.; Qiao, N.; Soomro, R. A.; Zhang, R.; Xu, B. Stabilized Ti3C2Tx-doped 3D vesicle polypyrrole coating for efficient protection toward copper in artificial seawater. Appl. Surf. Sci. 2024, 642, 158639.

    Article  CAS  Google Scholar 

  190. Yan, Z. Y.; Hu, Q. S.; Jiang, F.; Lin, S. B.; Li, R. S.; Chen, S. J. Mechanism and technology evaluation of a novel alternating-arc-based directed energy deposition method through polarity-switching self-adaptive shunt. Addit. Manuf. 2023, 67, 103504.

    CAS  Google Scholar 

  191. Zheng, B. R.; Lin, D. L.; Qi, S. J.; Hu, Y. Z.; Jin, Y. Z.; Chen, Q. L.; Bian, D. L.; Yan, R. H. Turbulent skin-friction drag reduction by annular dielectric barrier discharge plasma actuator. Phys. Fluids 2023, 35, 125129.

    Article  CAS  Google Scholar 

  192. Zhong, Y. J.; Xu, X. M.; Liu, P. Y.; Ran, R.; Jiang, S. P.; Wu, H. W.; Shao, Z. P. A function-separated design of electrode for realizing high-performance hybrid zinc battery. Adv. Energy Mater. 2020, 10, 2002992.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Agency for Science, Technology and Research (A*STAR), Science and Engineering Research Council, and A*ccelerate Technologies for this work (No. GAP/2019/00314).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Zhu or Xian Jun Loh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wu, WY., Wang, S. et al. Polymer electrolytes for flexible zinc-air batteries: Recent progress and future directions. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6555-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6555-z

Keywords

Navigation