Skip to main content
Log in

Structure-regulated fluorine-containing additives to improve the performance of perovskite solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) have seen remarkable progress in recent years, largely attributed to various additives that enhance both efficiency and stability. Among these, fluorine-containing additives have garnered significant interest because of their unique hydrophobic properties, effective defect passivation, and regulation capability on the crystallization process. However, a targeted structural approach to design such additives is necessary to further enhance the performance of PSCs. Here, fluoroalkyl ethylene with different fluoroalkyl chain lengths (CH2CH(CF2)nCF3, n = 3, 5, and 7) as liquid additives is used to investigate influences of fluoroalkyl chain lengths on crystallization regulation and defect passivation. The findings indicate that optimizing the quantity of F groups plays a crucial role in regulating the electron cloud distribution within the additive molecules. This optimization fosters strong hydrogen bonds and coordination effects with FA+ and uncoordinated Pb2+, ultimately enhancing crystal quality and device performance. Notably, 1H,1H,2H-perfluoro-1-hexene (PF3) with the optimal number of F presents the most effective modulation effect. A PSC utilizing PF3 achieves an efficiency of 24.05%, and exhibits exceptional stability against humidity and thermal fluctuations. This work sheds light on the importance of tailored structure designs in additives for achieving high-performance PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Best research-cell efficiency chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Dec 9, 2023).

  2. Feng, J. G.; Wang, X.; Li, J.; Liang, H. M.; Wen, W.; Alvianto, E.; Qiu, C. W.; Su, R.; Hou, Y. Resonant perovskite solar cells with extended band edge. Nat. Commun. 2023, 14, 5392.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, G. L.; Lian, Q.; Wang, D.; Jiang, F.; Mi, G. J.; Li, D. Y.; Huang, Y. L.; Wang, Y.; Yao, X. Y.; Shi, R. et al. Thermal-radiation-driven ultrafast crystallization of perovskite films under heavy humidity for efficient inverted solar cells. Adv. Mater. 2022, 34, 2205143.

    Article  CAS  Google Scholar 

  4. Zhou, J.; Gao, Y.; Pan, Y. Y.; Ren, F. M.; Chen, R.; Meng, X.; Sun, D. R.; He, J. Z.; Liu, Z. H.; Chen, W. Recent advances in the combined elevated temperature, humidity, and light stability of perovskite solar cells. Solar RRL 2022, 6, 2200772.

    Article  CAS  Google Scholar 

  5. Wu, W. W.; Xiong, H.; Deng, J. H.; Wang, M. Q.; Zheng, H. Q.; Wu, M.; Yuan, S. Y.; Ma, Z. P.; Fan, J. D.; Li, W. Z. Rotatable skeleton for the alleviation of thermally accumulated defects in inorganic perovskite solar cells. ACS Energy Lett. 2023, 8, 2284–2291.

    Article  CAS  Google Scholar 

  6. Lin, M. Y.; He, J. J.; Liu, X. Y.; Li, Q.; Wei, Z. P.; Sun, Y. T.; Leng, X. S.; Chen, M. J.; Xia, Z. H.; Peng, Y. et al. Nano-capillary induced assemble of quantum dots on perovskite grain boundaries for efficient and stable perovskite solar cells. J. Energy Chem. 2023, 83, 595–601.

    Article  CAS  Google Scholar 

  7. Qin, M. C.; Xue, H. B.; Zhang, H. K.; Hu, H. L.; Liu, K.; Li, Y. H.; Qin, Z. T.; Ma, J. J.; Zhu, H. P.; Yan, K. Y. et al. Precise control of perovskite crystallization kinetics via sequential A-site doping. Adv. Mater. 2020, 32, 2004630.

    Article  CAS  Google Scholar 

  8. Lee, D. K.; Park, N. G. Additive engineering for highly efficient and stable perovskite solar cells. Appl. Phys. Rev. 2023, 10, 011308.

    Article  CAS  Google Scholar 

  9. Chen, X. H.; Huang, J.; Gao, F.; Xu, B. Phosphine oxide additives for perovskite light-emitting diodes and solar cells. Chem 2023, 9, 562–575.

    Article  CAS  Google Scholar 

  10. Abbas, M.; Rauf, M.; Cai, B. Y.; Guo, F.; Yuan, X. C.; Rana, T. R.; Mackenzie, J. D.; Kyaw, A. K. K. Enhanced open-circuit voltage and improved stability with 3-guanidinoproponic acid as the passivation agent in blade-coated inverted perovskite solar cells. ACS Appl. Energy Mater. 2023, 6, 6485–6495.

    Article  CAS  Google Scholar 

  11. Luo, M.; Zong, X. P.; Zhao, M.; Sun, Z.; Chen, Y.; Liang, M.; Wu, Y. Z.; Xue, S. Synergistic effect of amide and fluorine of polymers assist stable inverted perovskite solar cells with fill factor > 83%. Chem. Eng. J. 2022, 442, 136136.

    Article  CAS  Google Scholar 

  12. Liu, C.; Liu, S.; Wang, Y. F.; Chu, Y. M.; Yang, K.; Wang, X. D.; Gao, C. X.; Wang, Q. F.; Du, J. K.; Li, S. et al. Improving the performance of perovskite solar cells via a novel additive of N,1-fluoroformamidinium iodide with electron-withdrawing fluorine group. Adv. Funct. Mater. 2021, 31, 2010603.

    Article  CAS  Google Scholar 

  13. Zhao, Y.; Li, B.; Tian, C. M.; Han, X. F.; Qiu, Y.; Xiong, H.; Li, K. R.; Hou, C. Y.; Li, Y. G.; Wang, H. Z. et al. Anhydrous organic etching derived fluorine-rich terminated MXene nanosheets for efficient and stable perovskite solar cells. Chem. Eng. J. 2023, 469, 143862.

    Article  CAS  Google Scholar 

  14. Wang, M. H.; Li, Y. W.; Zhao, X. Q.; Wang, W.; Chen, J. W.; Zhang, W. Z.; Huang, Y.; Zhang, L. J.; Chen, S. F. Rational design of additive with suitable functional groups toward high-quality FA0.75MA0.25SnI3 films and solar cells. Solar RRL 2022, 6, 2100800.

    Article  CAS  Google Scholar 

  15. Jiang, X. Q.; Yang, G. Y.; Zhang, B. Q.; Wang, L. Q.; Yin, Y. F.; Zhang, F. S.; Yu, S. T.; Liu, S. W.; Bu, H. K.; Zhou, Z. M. et al. Understanding the role of fluorine groups in passivating defects for perovskite solar cells. Angew. Chem., Int. Ed. 2023, 62, e202313133.

    Article  CAS  Google Scholar 

  16. Kong, Y. J.; Shen, W. J.; Cai, H. Y.; Dong, W.; Bai, C.; Zhao, J.; Huang, F. Z.; Cheng, Y. B.; Zhong, J. Multifunctional organic potassium salt additives as the efficient defect passivator for high-efficiency and stable perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2300932.

    Article  CAS  Google Scholar 

  17. Li, N. X.; Tao, S. X.; Chen, Y. H.; Niu, X. X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z. W.; Xu, Z. Q.; Zheng, G. H. J.; Wang, L. G. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 2019, 4, 408–415.

    Article  ADS  CAS  Google Scholar 

  18. Hu, W. P.; Wen, Z. L.; Yu, X.; Qian, P. S.; Lian, W. T.; Li, X. C.; Shang, Y. B.; Wu, X. J.; Chen, T.; Lu, Y. L. et al. In situ surface fluorination of TiO2 nanocrystals reinforces interface binding of perovskite layer for highly efficient solar cells with dramatically enhanced ultraviolet-light stability. Adv. Sci. (Weinh.) 2021, 8, 2004662

    CAS  PubMed  Google Scholar 

  19. Liu, L. D.; Li, Y.; Zheng, C.; Liu, Z. K.; Yuan, N. Y.; Ding, J. N.; Wang, D. P.; Liu, S. Z. Collaborative strategy of multifunctional groups in trifluoroacetamide achieving efficient and stable perovskite solar cells. Solar RRL 2022, 6, 2200284.

    Article  CAS  Google Scholar 

  20. Fu, S. Q.; Wang, J. H.; Liu, X. H.; Yuan, H. B.; Xu, Z. X.; Long, Y. J.; Zhang, J.; Huang, L. K.; Hu, Z. Y.; Zhu, Y. J. Multifunctional liquid additive strategy for highly efficient and stable CsPbI2Br all-inorganic perovskite solar cells. Chem. Eng. J. 2021, 422, 130572.

    Article  CAS  Google Scholar 

  21. Liu, B.; Wang, Y. Q.; Wu, Y. J.; Zhang, Y. H.; Lyu, J.; Liu, Z. Q.; Bian, S. H.; Bai, X.; Xu, L.; Zhou, D. L. et al. Vitamin natural molecule enabled highly efficient and stable planar n-p homojunction perovskite solar cells with efficiency exceeding 24.2%. Adv. Energy Mater. 2023, 13, 2203352.

    Article  CAS  Google Scholar 

  22. Sun, R. M.; Tian, Q. S.; Li, M. B.; Wang, H. Z.; Chang, J. X.; Xu, W. X.; Li, Z. H.; Pan, Y. Y.; Wang, F. F.; Qin, T. S. Over 24% efficient poly(vinylidene fluoride) (PVDF)-coordinated perovskite solar cells with a photovoltage up to 1.22 V. Adv. Funct. Mater. 2023, 33, 2210071.

    Article  CAS  Google Scholar 

  23. Zhao, C. X.; Zhang, H.; Almalki, M.; Xu, J.; Krishna, A.; Eickemeyer, F. T.; Gao, J.; Wu, Y. M.; Zakeeruddin, S. M.; Chu, J. H. et al. Stabilization of FAPbI3 with multifunctional alkali-functionalized polymer. Adv. Mater., 2023, 35, 2211619.

    Article  CAS  Google Scholar 

  24. Zhang, J. K.; Li, Z. P.; Guo, F. J.; Jiang, H. K.; Yan, W. J.; Peng, C.; Liu, R. X.; Wang, L.; Gao, H. T.; Pang, S. P. et al. Thermally crosslinked F-rich polymer to inhibit lead leakage for sustainable perovskite solar cells and modules. Angew. Chem., Int. Ed. 2023, 62, e202305221.

    Article  Google Scholar 

  25. Ma, C. Q.; Kang, M. C.; Lee, S. H.; Zhang, Y. L.; Kang, D. H.; Yang, W. X.; Zhao, P.; Kim, S. W.; Kwon, S. J.; Yang, C. W. et al. Facet-dependent passivation for efficient perovskite solar cells. J. Am. Chem. Soc. 2023, 145, 24349–24357.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, P.; Bai, Y.; Wang, S. C.; Lyu, M.; Yun, J. H.; Wang, L. Z. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923.

    Article  Google Scholar 

  27. Liang, L. S.; Luo, H. T.; Hu, J. J.; Li, H.; Gao, P. Efficinnt perovskite solar cells by reducing interface-mediated recombination: A bulky amine approach. Adv. Energy Mater. 2020, 10, 2000197.

    Article  CAS  Google Scholar 

  28. Jiang, B. L.; Zhang, B. L.; He, Y.; Peng, Q. J.; Jiao, Z. J.; Qiao, L. J. Combined effects of irradiation and hydrogen ions on surface oxidation of 308 L austenite stainless steel. Corros. Sci. 2021, 191, 109734.

    Article  CAS  Google Scholar 

  29. Deng, J. D.; Ahangar, H.; Xiao, Y. H.; Luo, Y. Y.; Cai, X. Y.; Li, Y. N.; Wu, D. Y.; Yang, L.; Sheibani, E.; Zhang, J. B. Side-group-mediated small molecular interlayer to achieve superior passivation strength and enhanced carrier dynamics for efficient and stable perovskite solar cells. Adv. Funct. Mater. 2024, 34, 2309484.

    Article  CAS  Google Scholar 

  30. Zhang, S. S.; Wu, S. H.; Chen, R.; Chen, W. T.; Huang, Y. Q.; Yang, Z. C.; Chen, W. Formamidine-assisted fast crystallization to fabricate formamidinium-based perovskite films for high-efficiency and stable solar cells. J. Mater. Chem. C 2020, 8, 1642–1648.

    Article  CAS  Google Scholar 

  31. Chen, L.; Chen, J. D.; Wang, C. Y.; Ren, H.; Hou, H. Y.; Zhang, Y. F.; Li, Y. Q.; Gao, X. Y.; Tang, J. X. Suppressed voltage deficit and degradation of perovskite solar cells by regulating the mineralization of lead iodide. Small 2023, 19, 2207817.

    Article  CAS  Google Scholar 

  32. Sun, Q. H.; Tuo, B.; Ren, Z. Q.; Xue, T. Y.; Zhang, Y. Q.; Ma, J. J.; Li, P. W.; Song, Y. L. A thiourea competitive crystallization strategy for FA-based perovskite solar cells. Adv. Funct. Mater. 2022, 32, 2208885.

    Article  CAS  Google Scholar 

  33. Zheng, H. Y.; Liu, G. Z.; Wu, W. W.; Xu, H. F.; Pan, X. Highly efficient and stable perovskite solar cells with strong hydrophobic barrier via introducing poly(vinylidene fluoride) additive. J. Energy Chem. 2021, 57, 593–600.

    Article  CAS  Google Scholar 

  34. Fu, Q.; Tang, X. C.; Liu, H.; Wang, R.; Liu, T. T.; Wu, Z. A.; Woo, H. Y.; Zhou, T.; Wan, X. J.; Chen, Y. S. et al. Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. J. Am. Chem. Soc. 2022, 144, 9500–9509.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, F. F.; Li, M. B.; Tian, Q. S.; Sun, R. M.; Ma, H. Z.; Wang, H. Z.; Chang, J. X.; Li, Z. H.; Chen, H. Y.; Cao, J. P. et al. Monolithically-grained perovskite solar cell with mortise-tenon structure for charge extraction balance. Nat. Commun. 2023, 14, 3216.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bu, T. L.; Wu, L.; Liu, X. P.; Yang, X. K.; Zhou, P.; Yu, X. X.; Qin, T. S.; Shi, J. J.; Wang, S.; Li, S. S. et al. Solar cells: Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700576.

    Article  Google Scholar 

  37. Zhang, Y.; Zhuang, X. H.; Zhou, K.; Cai, C.; Hu, Z. Y.; Zhang, J.; Zhu, Y. J. Amorphous polymer with C=O to improve the performance of perovskite solar cells. J. Mater. Chem. C 2017, 5, 9037–9043.

    Article  Google Scholar 

  38. Xu, Y. M.; Liu, G. H.; Hu, J. F.; Wang, G.; Chen, M. Y.; Chen, Y.; Li, M. J.; Zhang, H.; Chen, Y. H. In situ polymer network in perovskite solar cells enabled superior moisture and thermal resistance. J. Phys. Chem. Lett. 2022, 13, 3754–3762.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (Nos. 62105293, 91963212, 52303257, and 52321006), the National Key Research and Development Program of China (No. 2018YFA0208501), the Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202005), Graduate Education Reform Project of Henan Province (No. 2023SJGLX136Y), the China Postdoctoral Science Foundation (Nos. 2023TQ0300 and 2023M743171), the Key Scientific Research Projects of Colleges and Universities in Henan Province (No. 23A430017), the Outstanding Young Talent Research Fund of Zhengzhou University, Opening Project of State Key Laboratory of Advanced Technology for Float Glass (No. 2022KF04), the Joint Research Project of Puyang Shengtong Juyuan New Materials Co., Ltd., and Outstanding Young Talents Innovation Team Support Plan of Zhengzhou University. The computational resources in this research were supported by the Henan Supercomputer Center. The authors also thank the Advanced Analysis & Computation Center at Zhengzhou University for materials and device characterization support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shasha Zhang, Yiqiang Zhang or Yanlin Song.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Bi, X., Yan, H. et al. Structure-regulated fluorine-containing additives to improve the performance of perovskite solar cells. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6554-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6554-0

Keywords

Navigation