Skip to main content

Advertisement

Log in

Bifunctional interface modification for efficient and UV-robust α-Fe2O3-based planar organic–inorganic hybrid perovskite solar cells

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid perovskite solar cells (PSCs) have become the front runner among the next-generation thin-film photovoltaic technology due to their rapid great improvements in photovoltaic performance. The improvement of PSCs mainly focuses on their power conversion efficiency (PCE) and ambient stability. α-Fe2O3 has been demostrated as one promising electron transport material in planar n-i-p PSCs, which exhibit much higher ultraviolet (UV) light stability compared to TiO2-based devices. However, both energetic mismatch and numerous hydroxyl species on α-Fe2O3 surface are dentrimental to the charge transfer and collection in PSCs. Herein, we have engineered the α-Fe2O3 electron transport layer (ETL)-perovskite interface via lead iodide (PbI2)-assisted bifunctional modification. The surface hydroxyl groups could be effectively diminished by coordination with PbI2 accompanied with the formation of Fe–O-Pb bonds. It was found that the decreased -OH groups were beneficial to suppressing J-V hysteresis and improving interfacial alignment of energy levels. Meanwhile, numerous intrinsic iodine vacancies at the perovskite crystal surface could be compensated by the excess I from PbI2, thereby reducing interfacial non-radiative recombination. Consequently, compared with reference devices, α-Fe2O3/PbI2 devices achieved a noticeable improvement of average PCE with attenuated J-V hysteresis. More importantly, α-Fe2O3/PbI2 devices exhibited significantly improved UV and shelf-life stabilities. Furthermore, compared with the CH3NH3PbI3-based device, a higher PCE of 19.32% was achieved for the device assembled with a Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 perovskite active layer. Overall, this work provided a facile PbI2-assisted interface modification strategy for boosting the efficiency and stability of α-Fe2O3-based planar PSCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li W, Zhang W, Van Reenen S, Sutton RJ, Fan J, Haghighirad AA, Johnston MB, Wang L, Snaith HJ (2016) Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ Sci 9(2):490–498. https://doi.org/10.1039/C5EE03522H

    Article  CAS  Google Scholar 

  2. Jeong M, Choi IW, Go EM, Cho Y, Kim M, Lee, B, Jeong S, Jo Y, Choi HW, Lee J, Bae J, Kwak SK, Kim DS, Yang C (2020) Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3 V voltage loss. Science 369(6511):1615–1620. https://doi.org/10.1126/science.abb7167

  3. Yoo JJ, Seo G, Chua MR, Park TG, Lu Y, Rotermund F, Kim YK, Moon CS, Jeon NJ, Correa-Baena JP, Bulović V, Shin SS, Bawendi M, Seo J (2021) Efficient perovskite solar cells via improved carrier management. Nature 590(7847):587–593. https://doi.org/10.1038/s41586-021-03285-w

    Article  CAS  Google Scholar 

  4. Liu Y, Yang Z, Cui D, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, Yu F, Zhang X, Zhao C, Liu S (2015) Two-inch-sized perovskite CH3NH3PbX3 (X= Cl, Br, I) crystals: growth and characterization. Adv Mater 27(35):5176–5183. https://doi.org/10.1002/adma.201502597

    Article  CAS  Google Scholar 

  5. Wei H, Li A, Kong D, Li Z, Cui D, Li T, Dong B, Guo Z (2021) Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater 4(1):86–95. https://doi.org/10.1007/s42114-020-00201-0

    Article  CAS  Google Scholar 

  6. Yi C, Luo J, Meloni S, Boziki A, Ashari-Astani N, Grätzel C, Zakeeruddin SM, Röthlisberger U, Grätzel M (2016) Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ Sci 9(2):656–662. https://doi.org/10.1039/C5EE03255E

    Article  CAS  Google Scholar 

  7. Yang D, Yang Z, Qin W, Zhang Y, Liu SF, Li C (2015) Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition. J Mater Chem A 3(18):9401–9405. https://doi.org/10.1039/C5TA01824B

    Article  CAS  Google Scholar 

  8. Gu H, Gao C, Zhou X, Du A, Naik N, Guo Z (2021) Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv Compos Hybrid Mater 4(3):459–468. https://doi.org/10.1007/s42114-021-00289-y

    Article  CAS  Google Scholar 

  9. Hu X, Wu H, Lu X, Liu S, Qu J (2021) Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion. Adv Compos Hybrid Mater 4(3):478–491. https://doi.org/10.1007/s42114-021-00300-6

    Article  CAS  Google Scholar 

  10. Yan Z, Sun Z, Li A, Liu H, Guo Z, Qian L (2021) Three-dimensional porous flower-like S-doped Fe2O3 for superior lithium storage. Adv Compos Hybrid Mater 4(3):716–724. https://doi.org/10.1007/s42114-021-00301-5

    Article  CAS  Google Scholar 

  11. Wang Z, Lin Q, Chmiel FP, Sakai N, Herz LM, Snaith HJ (2017) Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat Energy 2(9):1–10. https://doi.org/10.1038/nenergy.2017.135

    Article  CAS  Google Scholar 

  12. Men Q, Wang S, Yan Z, Zhao B, Guan L, Chen G, Guo X, Zhang R, Che R (2022) Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00457-8

    Article  Google Scholar 

  13. Xiao Z, Wang D, Dong Q, Wang Q, Wei W, Dai J, Zeng X, Huang J (2016) Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells. Energy Environ Sci 9(3):867–872. https://doi.org/10.1039/C6EE00183A

    Article  CAS  Google Scholar 

  14. Gao H, Li J, Liu Y, Leng J (2021) Shape memory polymer solar cells with active deformation. Adv Compos Hybrid Mater 4(4):957–965. https://doi.org/10.1007/s42114-021-00263-8

    Article  CAS  Google Scholar 

  15. Yuan B, Guo M, Murugadoss V, Song G, Guo Z (2021) Immobilization of graphitic carbon nitride on wood surface via chemical crosslinking method for UV resistance and self-cleaning. Adv Compos Hybrid Mater 4(2):286–293. https://doi.org/10.1007/s42114-021-00235-y

    Article  CAS  Google Scholar 

  16. Yakunin S, Dirin DN, Shynkarenko Y, Morad V, Cherniukh I, Nazarenko O, Kreil D, Nauser T, Kovalenko MV (2016) Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat Photonics 10(9):585–589. https://doi.org/10.1038/nphoton.2016.139

    Article  CAS  Google Scholar 

  17. Chen C, Hu J, Xu Z, Wang Z, Wang Y, Zeng L, Liu X, Li Y, Mai Y, Guo F (2021) Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices. Adv Compos Hybrid Mater 4(4):1261–1269. https://doi.org/10.1007/s42114-021-00238-9

    Article  CAS  Google Scholar 

  18. Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang HH, Wang C, Ecker BR, Gao Y, Loi MA, Cao L, Huang J (2016) Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics 10(5):333–339. https://doi.org/10.1038/nphoton.2016.41

    Article  CAS  Google Scholar 

  19. National Renewable Energy Laboratory. https://www.nrel.gov/pv/cell-efficiency.html. Accessed March 2022

  20. Singh T, Miyasaka T (2018) Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity. Adv Energy Mater 8(3):1700677. https://doi.org/10.1002/aenm.201700677

    Article  CAS  Google Scholar 

  21. Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ (2013) Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun 4(1):1–8. https://doi.org/10.1038/ncomms3885

    Article  CAS  Google Scholar 

  22. He B, Xu Y, Zhu J, Zhang X (2021) Effects of the doping density of charge-transporting layers on regular and inverted perovskite solar cells: numerical simulations. Adv Compos Hybrid Mater 4(4):1146–1154. https://doi.org/10.1007/s42114-021-00343-9

    Article  CAS  Google Scholar 

  23. Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q (2014) Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS Nano 8(10):10161–10167. https://doi.org/10.1021/nn5029828

    Article  CAS  Google Scholar 

  24. Ip AH, Quan LN, Adachi MM, McDowell JJ, Xu J, Kim DH, Sargent EH (2015) A two-step route to planar perovskite cells exhibiting reduced hysteresis. Appl Phys Lett 106(14):143902. https://doi.org/10.1063/1.4917238

    Article  CAS  Google Scholar 

  25. Kim J, Kim G, Kim TK, Kwon S, Back H, Lee J, Lee SH, Kang H, Lee K (2014) Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. J Mater Chem A 2(41):17291–17296. https://doi.org/10.1039/C4TA03954H

    Article  CAS  Google Scholar 

  26. Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H (2014) A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194):295–298. https://doi.org/10.1126/science.1254763

    Article  CAS  Google Scholar 

  27. Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y (2015) Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc 137(21):6730–6733. https://doi.org/10.1021/jacs.5b01994

    Article  CAS  Google Scholar 

  28. Hu W, Liu T, Yin X, Liu H, Zhao X, Luo S, Guo Y, Yao Z, Wang J, Wang N, Lin H, Guo Z (2017) Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis. J Mater Chem A 5(4):1434–1441. https://doi.org/10.1039/C6TA09174A

    Article  CAS  Google Scholar 

  29. Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong PK (2018) A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv Mater 30(10):1706108. https://doi.org/10.1002/adma.201706108

    Article  CAS  Google Scholar 

  30. Luo Q, Chen H, Lin Y, Du H, Hou Q, Hao F, Wang N, Guo Z, Huang J (2017) Discrete iron (III) oxide nanoislands for efficient and photostable perovskite solar cells. Adv Funct Mater 27(34):1702090. https://doi.org/10.1002/adfm.201702090

    Article  CAS  Google Scholar 

  31. Cao Y, Zheng X, Du Z, Shen L, Zheng Y, Au C, Jiang L (2019) Low-temperature H2S removal from gas streams over γ-FeOOH, γ-Fe2O3, and α-Fe2O3: effects of the hydroxyl group, defect, and specific surface area. Ind Eng Chem Res 58(42):19353–19360. https://doi.org/10.1021/acs.iecr.9b03430

    Article  CAS  Google Scholar 

  32. Yin WJ, Shi T, Yan Y (2014) Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett 104(6):063903. https://doi.org/10.1063/1.4864778

    Article  CAS  Google Scholar 

  33. Sherkar TS, Momblona C, Gil-Escrig L, Bolink HJ, Koster LJA (2017) Improving perovskite solar cells: insights from a validated device model. Adv Energy Mater 7(13):1602432. https://doi.org/10.1002/aenm.201602432

    Article  CAS  Google Scholar 

  34. Pant N, Kulkarni A, Yanagida M, Shirai Y, Miyasaka T, Miyano K (2020) Residual PbI2 beneficial in the bulk or at the interface? An investigation study in sputtered NiOx hole-transport-layer-based perovskite solar cells. ACS Appl Energy Mater 3(7):6215–6221. https://doi.org/10.1021/acsaem.0c00245

    Article  CAS  Google Scholar 

  35. Wu WQ, Rudd PN, Ni Z, Van Brackle CH, Wei H, Wang Q, Ecker BR, Gao Y, Huang J (2020) Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J Am Chem Soc 142(8):3989–3996. https://doi.org/10.1021/jacs.9b13418

    Article  CAS  Google Scholar 

  36. Tong CJ, Li L, Liu LM, Prezhdo OV (2018) Long carrier lifetimes in PbI2-rich perovskites rationalized by ab initio nonadiabatic molecular dynamics. ACS Energy Lett 3(8):1868–1874. https://doi.org/10.1021/acsenergylett.8b00961

    Article  CAS  Google Scholar 

  37. Kapoor V, Bashir A, Haur LJ, Bruno A, Shukla S, Priyadarshi A, Mathews N, Mhaisalkar S (2017) Effect of excess PbI2 in fully printable carbon-based perovskite solar cells. Energy Technol 5(10):1880–1886. https://doi.org/10.1002/ente.201700484

    Article  CAS  Google Scholar 

  38. Chen Q, Zhou H, Song TB, Luo S, Hong Z, Duan HS, Dou L, Liu Y, Yang Y (2014) Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett 14(7):4158–4163. https://doi.org/10.1021/nl501838y

    Article  CAS  Google Scholar 

  39. Barbé J, Newman M, Lilliu S, Kumar V, Lee HKH, Charbonneau C, Lidzey D, Tsoi WC (2018) Localized effect of PbI2 excess in perovskite solar cells probed by high-resolution chemical–optoelectronic mapping. J Mater Chem A 6(45):23010–23018. https://doi.org/10.1039/C8TA09536A

    Article  Google Scholar 

  40. Chen H, Liu T, Wang B, Liu Z, Li Y, Zhao Q, Wang N, He H, Liu H, Guo Z (2018) Highly efficient charge collection in dye-sensitized solar cells based on nanocomposite photoanode filled with indium-tin oxide interlayer. Adv Compos Hybrid Mater 1(2):356–363. https://doi.org/10.1007/s42114-018-0035-4

    Article  CAS  Google Scholar 

  41. Guo Y, Liu T, Wang N, Luo Q, Lin H, Li J, Jiang Q, Wu L, Guo Z (2017) Ni-doped α-Fe2O3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability. Nano Energy 38:193–200. https://doi.org/10.1016/j.nanoen.2017.05.026

    Article  CAS  Google Scholar 

  42. Nakayashiki S, Daisuke H, Ogomi Y, Hayase S (2015) Interface structure between titania and perovskite materials observed by quartz crystal microbalance system. J Photonics Energy 5(1):057410. https://doi.org/10.1117/1.JPE.5.057410

    Article  CAS  Google Scholar 

  43. Heo JH, Song DH, Han HJ, Kim SY, Kim JH, Kim D, Shin HW, Ahn TK, Wolf C, Lee TW, Im SH (2015) Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv Mater 27(22):3424–3430. https://doi.org/10.1002/adma.201500048

  44. van Reenen S, Kemerink M, Snaith HJ (2015) Modeling anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 6(19):3808–3814. https://doi.org/10.1021/acs.jpclett.5b01645

    Article  CAS  Google Scholar 

  45. Wei J, Zhao Y, Li H, Li G, Pan J, Xu D, Zhao Q, Yu D (2014) Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. J Phys Chem Lett 5(21):3937–3945. https://doi.org/10.1021/jz502111u

    Article  CAS  Google Scholar 

  46. Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JT, Wojciechowski K, Zhang W (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Let 5(9):1511–1515. https://doi.org/10.1021/jz500113x

    Article  CAS  Google Scholar 

  47. Dualeh A, Moehl T, Tétreault N, Teuscher J, Gao P, Nazeeruddin MK, Grätzel M (2014) Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8(1):362–373. https://doi.org/10.1021/nn404323g

    Article  CAS  Google Scholar 

  48. Habisreutinger SN, Noel NK, Snaith HJ (2018) Hysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cells. ACS Energy Lett 3(10):2472–2476. https://doi.org/10.1021/acsenergylett.8b01627

    Article  CAS  Google Scholar 

  49. Xia C, Jia Y, Tao M, Zhang Q (2013) Tuning the band gap of hematite α-Fe2O3 by sulfur doping. Phys Lett A 377(31–33):1943–1947. https://doi.org/10.1016/j.physleta.2013.05.026

    Article  CAS  Google Scholar 

  50. Auer S, Frenkel D (2001) Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature 413(6857):711–713. https://doi.org/10.1038/35099513

    Article  CAS  Google Scholar 

  51. Guo J, Li X, Liu H, Young DP, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4(1):51–64. https://doi.org/10.1007/s42114-021-00211-6

    Article  CAS  Google Scholar 

  52. Wang B, Li X, Liang S, Chu R, Zhang D, Chen H, Cao X, Feng W (2020) Adsorption and oxidation of SO2 on the surface of TiO2 nanoparticles: the role of terminal hydroxyl and oxygen vacancy-Ti3+ states. Phys Chem Chem Phys 22(18):9943–9953. https://doi.org/10.1039/D0CP00785D

    Article  CAS  Google Scholar 

  53. Yin X, Meng X, Zhang Y, Zhang W, Sun H, Lessl JT, Wang N (2018) Removal of V (V) and Pb (II) by nanosized TiO2 and ZnO from aqueous solution. Ecotoxicol Environ Saf 164:510–519. https://doi.org/10.1016/j.ecoenv.2018.08.066

    Article  CAS  Google Scholar 

  54. Chen J, Zhao X, Kim SG, Park NG (2019) Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv Mater 31(39):1902902. https://doi.org/10.1002/adma.201902902

    Article  CAS  Google Scholar 

  55. Zhu H, Zhang F, Xiao Y, Wang S, Li X (2018) Suppressing defects through thiadiazole derivatives that modulate CH3NH3PbI3 crystal growth for highly stable perovskite solar cells under dark conditions. J Mater Chem A 6(12):4971–4980. https://doi.org/10.1039/C8TA00769A

    Article  CAS  Google Scholar 

  56. Long Z, Yuan L, Shi C, Wu C, Qiao H, Wang K (2021) Porous Fe2O3 nanorod-decorated hollow carbon nanofibers for high-rate lithium storage. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00397-9

    Article  Google Scholar 

  57. Cahen D, Kahn A (2003) Electron energetics at surfaces and interfaces: concepts and experiments. Adv Mater 15(4):271–277. https://doi.org/10.1002/adma.200390065

    Article  CAS  Google Scholar 

  58. Yang D, Yang R, Zhang J, Yang Z, Liu SF, Li C (2015) High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci 8(11):3208–3214. https://doi.org/10.1039/C5EE02155C

    Article  CAS  Google Scholar 

  59. Tiwana P, Docampo P, Johnston MB, Snaith HJ, Herz LM (2011) Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 5(6):5158–5166. https://doi.org/10.1021/nn201243y

    Article  CAS  Google Scholar 

  60. Zeng X, Luo Q, Li J, Li Y, Wang W, Li Y, Wu R, Pan D, Song G, Li J, Guo Z, Wang N (2021) A multifunctional pentlandite counter electrode toward efficient and stable sensitized solar cells. Adv Compos Hybrid Mater 4(2):392–400. https://doi.org/10.1007/s42114-021-00233-0

    Article  CAS  Google Scholar 

  61. Veerappan G, Jung DW, Kwon J, Choi JM, Heo N, Yi GR, Park JH (2014) Multi-functionality of macroporous TiO2 spheres in dye-sensitized and hybrid heterojunction solar cells. Langmuir 30(11):3010–3018. https://doi.org/10.1021/la404841h

    Article  CAS  Google Scholar 

  62. Pockett A, Eperon GE, Peltola T, Snaith HJ, Walker A, Peter LM, Cameron PJ (2015) Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy. J Phys Chem C 119(7):3456–3465. https://doi.org/10.1021/jp510837q

    Article  CAS  Google Scholar 

  63. Zhao Y, Zhu K (2013) Charge transport and recombination in perovskite (CH3NH3) PbI3 sensitized TiO2 solar cells. J Phys Chem Lett 4(17):2880–2884. https://doi.org/10.1021/jz401527q

    Article  CAS  Google Scholar 

  64. Guillén E, Ramos FJ, Anta JA, Ahmad S (2014) Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques. J Phys Chem C 118(40):22913–22922. https://doi.org/10.1021/jp5069076

    Article  CAS  Google Scholar 

  65. Dkhissi Y, Meyer S, Chen D, Weerasinghe HC, Spiccia L, Cheng YB, Caruso RA (2016) Stability comparison of perovskite solar cells based on zinc oxide and titania on polymer substrates. Chemsuschem 9(7):687–695. https://doi.org/10.1002/cssc.201501659

    Article  CAS  Google Scholar 

  66. Deng Y, Xu S, Chen S, Xiao X, Zhao J, Huang J (2021) Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat Energy 6(6):633–641. https://doi.org/10.1038/s41560-021-00831-8

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R&D Program of China (2018YFE0103500), National Natural Science Foundation of China (no. 61965010), the Start-up Research Foundation of Hainan University (KYQD(ZR)1906), Hainan Provincial Natural Science Foundation of China (420RC523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1171 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Liu, T., He, H. et al. Bifunctional interface modification for efficient and UV-robust α-Fe2O3-based planar organic–inorganic hybrid perovskite solar cells. Adv Compos Hybrid Mater 5, 3212–3222 (2022). https://doi.org/10.1007/s42114-022-00484-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00484-5

Keywords

Navigation