Skip to main content
Log in

Fire-retardant, anti-dripping, biodegradable and biobased polyurethane elastomers enabled by hydrogen-bonding with cellulose nanocrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Thermoplastic polyurethane (PU) elastomers have attracted significant attention because of their many important industrial applications. However, the creation of fire-retardant and anti-dripping PU elastomers has remained a grant challenge due to the lack of crosslinking and weak interchain interactions. Herein, we report a mechanically robust, biodegradable, fire-retardant, and anti-dripping biobased PU elastomer with excellent biodegradability using an abietic acid-based compound as hard segments and polycaprolactone diol (PCL) as soft segments, followed by physically crosslinking with cellulose nanocrystals (CNC) through dynamic hydrogen-bonding. The resultant elastomer shows the balanced mechanical and fire-retardant properties, e.g., a tensile strength and break strain of 9.1 MPa and 560%, a self-extinguishing ability (V-0 rating in UL-94 testing), and an anti-dripping behavior. Moreover, the as-developed PU can be completely degraded in 1.0 wt.% lipase solution at 37 °C in 60 days, arising from the catalytic and wicking effect of CNC on PU chains. This work provides an innovative and versatile strategy for constructing robust, fire-retardant, anti-dripping, and biodegradable PU elastomers, which hold great promise for practical applications in electronic and automobile sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, F. F.; Yang, Z. J.; Li, J.; Zhang, C.; Sun, P. C. Bioinspired polyurethane using multifunctional block modules with synergistic dynamic bonds. ACS Macro Lett. 2021, 10, 510–517.

    Article  CAS  PubMed  Google Scholar 

  2. Ying, W. B.; Wang, G. Y.; Kong, Z. Y.; Yao, C. K.; Wang, Y. B.; Hu, H.; Li, F. L.; Chen, C.; Tian, Y.; Zhang, J. W. et al. A biologically muscle-inspired polyurethane with super-tough, thermal reparable and self-healing capabilities for stretchable electronics. Adv. Funct. Mater. 2021, 31, 2009869.

    Article  CAS  Google Scholar 

  3. Du, R. C.; Xu, Z. C.; Zhu, C.; Jiang, Y. W.; Yan, H. P.; Wu, H. C.; Vardoulis, O.; Cai, Y. F.; Zhu, X. Y.; Bao, Z. N. et al. A highly stretchable and self-healing supramolecular elastomer based on sliding crosslinks and hydrogen bonds. Adv. Funct. Mater. 2020, 30, 1907139.

    Article  CAS  Google Scholar 

  4. Xu, W.; Zhang, R. Y.; Liu, W.; Zhu, J.; Dong, X.; Guo, H. X.; Hu, G. H. A multiscale investigation on the mechanism of shape recovery for IPDI to PPDI hard segment substitution in polyurethane. Macromolecules 2016, 49, 5931–5944.

    Article  ADS  CAS  Google Scholar 

  5. Hu, J.; Mo, R. B.; Sheng, X. X.; Zhang, X. Y. A self-healing polyurethane elastomer with excellent mechanical properties based on phase-locked dynamic imine bonds. Polym. Chem. 2020, 11, 2585–2594.

    Article  CAS  Google Scholar 

  6. Li, Z. Q.; Zhu, Y. L.; Niu, W. W.; Yang, X.; Jiang, Z. Y.; Lu, Z. Y.; Liu, X. K.; Sun, J. Q. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater. 2021, 33, 2101498.

    Article  CAS  Google Scholar 

  7. Yao, Y.; Liu, B.; Xu, Z. Y.; Yang, J. H.; Liu, W. G. An unparalleled H-bonding and ion-bonding crosslinked waterborne polyurethane with super toughness and unprecedented fracture energy. Mater. Horiz. 2021, 8, 2742–2749.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, X. H.; Zhan, S. N.; Lu, Z. Y.; Li, J.; Yang, X.; Qiao, Y. N.; Men, Y.; Sun, J. Q. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater. 2020, 32, 2005759.

    Article  CAS  Google Scholar 

  9. Chen, H.; Deng, C.; Zhao, Z. Y.; Huang, S. C.; Wei, Y. X.; Wang, Y. Z. Novel alkynyl-containing phosphonate ester oligomer with high charring capability as flame retardant additive for thermoplastic polyurethane. Compos. Part B: Eng. 2020, 199, 108315.

    Article  CAS  Google Scholar 

  10. Chen, H.; Deng, C.; Zhao, Z. Y.; Wan, L.; Yang, A. H.; Wang, Y. Z. Novel piperazine-containing oligomer as flame retardant and crystallization induction additive for thermoplastics polyurethane. Chem. Eng. J. 2020, 400, 125941.

    Article  CAS  Google Scholar 

  11. Xing, W. Y.; Xi, J. C.; Qi, L. Y.; Hai, Z. B.; Cai, W.; Zhang, W. J.; Wang, B. Y.; Chen, L.; Hu, Y. Construction of a flame retardant polyurethane elastomer with degradability, high mechanical strength and shape memory. Compos. Part A: Appl. Sci. Manuf. 2023, 169, 107512.

    Article  CAS  Google Scholar 

  12. Wang, H.; Liu, Q.; Zhao, X.; Jin, Z. Synthesis of reactive DOPO-based flame retardant and its application in polyurethane elastomers. Polym. Degrad. Stab. 2021, 183, 109440.

    Article  CAS  Google Scholar 

  13. Pan, G. F.; Wang, Z.; Kong, D. Q.; Sun, T. W.; Zhai, H.; Tian, T.; Wang, Y. F.; Xing, R. G.; Zhang, B. W. Transparent, flame-retarded, self-healable, mechanically strong polyurethane elastomers: Enabled by the synthesis of phosphorus/nitrogen-containing oxime chain-extender. J. Appl. Polym. Sci. 2022, 139, 51598.

    Article  CAS  Google Scholar 

  14. Kang, K. S.; Phan, A.; Olikagu, C.; Lee, T.; Loy, D. A.; Kwon, M.; Paik, H. J.; Hong, S. J.; Bang, J.; Parker, W. O. Jr. et al. Segmented polyurethanes and thermoplastic elastomers from elemental sulfur with enhanced thermomechanical properties and flame retardancy. Angew. Chem., Int. Ed. 2021, 60, 22900–22907.

    Article  CAS  Google Scholar 

  15. Xue, Y. J.; Lin, J. Y.; Wan, T.; Luo, Y. L.; Ma, Z. W.; Zhou, Y. H.; Tuten, B. T.; Zhang, M.; Tao, X. Y.; Song, P. A. Stretchable, ultratough, and intrinsically self-extinguishing elastomers with desirable recyclability. Adv. Sci. 2023, 10, 2207268.

    Article  CAS  Google Scholar 

  16. Xue, Y. J.; Ma, Z. W.; Xu, X. D.; Shen, M. X.; Huang, G. B.; Bourbigot, S.; Liu, X. Q.; Song, P. A. Mechanically robust and flame-retardant polylactide composites based on molecularly-engineered polyphosphoramides. Compos. Part A: Appl. Sci. Manuf. 2021, 144, 106317.

    Article  CAS  Google Scholar 

  17. Xue, Y. J.; Zhang, T. C.; Tian, L. F.; Feng, J. B.; Song, F.; Pan, Z.; Zhang, M.; Zhou, Y. H.; Song, P. A. A molecularly engineered bioderived polyphosphonate containing Schiff base towards fire-retardant PLA with enhanced crystallinity and mechanical properties. Chem. Eng. J. 2023, 472, 144986.

    Article  CAS  Google Scholar 

  18. Xue, Y. J.; Feng, J. B.; Huo, S. Q.; Song, P. A.; Yu, B.; Liu, L.; Wang, H. Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide. Chem. Eng. J. 2020, 397, 125336.

    Article  CAS  Google Scholar 

  19. Xue, Y. J.; Feng, J. B.; Ma, Z. W.; Liu, L. N.; Zhang, Y.; Dai, J. F.; Xu, Z. G.; Bourbigot, S.; Wang, H.; Song, P. A. Advances and challenges in eco-benign fire-retardant polylactide. Mater. Today Phys. 2021, 21, 100568.

    Article  CAS  Google Scholar 

  20. Wang, H. F.; Wang, J.; Guo, H. M.; Chen, X. G.; Yu, X. Y.; Ma, Y. H.; Ji, P. G.; Naito, K.; Zhang, Z. J.; Zhang, Q. X. A novel high temperature vinylpyridine-based phthalonitrile polymer with a low melting point and good mechanical properties. Polym. Chem. 2018, 9, 976–983.

    Article  CAS  Google Scholar 

  21. Gu, J. W.; Dang, J.; Wu, Y. L.; Xie, C.; Han, Y. Flame-retardant, thermal, mechanical and dielectric properties of structural non-halogenated epoxy resin composites. Polym. Plast. Technol. Eng. 2012, 51, 1198–1203.

    Article  CAS  Google Scholar 

  22. Jiao, Y. Z.; Rong, Z. H.; Gao, C. H.; Wu, Y. M.; Liu, Y. T. Tannic acid crosslinked self-healing and reprocessable silicone elastomers with improved antibacterial and flame retardant properties. Macromol. Rapid Commun. 2023, 44, 2200681.

    Article  CAS  Google Scholar 

  23. Wang, Z. H.; Liu, B. W.; Zeng, F. R.; Lin, X. C.; Zhang, J. Y.; Wang, X. L.; Wang, Y. Z.; Zhao, H. B. Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy, and harsh-environment resistance. Sci. Adv. 2022, 8, eadd8527.

  24. Grimme, S. Do special noncovalent π−π stacking interactions really exist. Angew. Chem., Int. Ed. 2008, 47, 3430–3434.

    Article  CAS  Google Scholar 

  25. Wang, L.; Peng, Y. W.; Xu, Y. L.; Zhang, J. J.; Liu, C. G.; Tang, X. J.; Lu, Y.; Sun, H. W. Earthworms’ degradable bioplastic diet of polylactic acid: Easy to break down and slow to excrete. Environ. Sci. Technol. 2022, 56, 5020–5028.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Martin, R. T.; Camargo, L. P.; Miller, S. A. Marine-degradable polylactic acid. Green Chem. 2014, 16, 1768–1773.

    Article  CAS  Google Scholar 

  27. Mi, H. Y.; Jing, X.; Napiwocki, B. N.; Hagerty, B. S.; Chen, G. J.; Turng, L. S. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J. Mater. Chem. B 2017, 5, 4137–4151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Al Hosni, A. S.; Pittman, J. K.; Robson, G. D. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Manage. 2019, 97, 105–114.

    Article  CAS  Google Scholar 

  29. Wang, H.; Wei, D. F.; Zheng, A. N.; Xiao, H. N. Soil burial biodegradation of antimicrobial biodegradable PBAT films. Polym. Degrad. Stab. 2015, 116, 14–22.

    Article  CAS  Google Scholar 

  30. Liu, B.; Guan, T. H.; Wu, G.; Fu, Y.; Weng, Y. X. Biodegradation behavior of degradable mulch with poly (butylene adipate-coterephthalate) (PBAT) and poly (butylene succinate) (PBS) in simulation marine environment. Polymers 2022, 14, 1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, M.; Yang, Y. K.; Huang, M. L.; Fu, S. K.; Hao, Y. Y.; Hu, S. Y.; Lai, D. L.; Zhao, L. Adsorption behaviors and mechanisms of antibiotic norfloxacin on degradable and nondegradable microplastics. Sci. Total Environ. 2022, 807, 151042.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Qi, J. F.; Wu, J.; Chen, J. Y.; Wang, H. P. An investigation of the thermal and (bio)degradability of PBS copolyesters based on isosorbide. Polym. Degrad. Stab. 2019, 160, 229–241.

    Article  CAS  Google Scholar 

  33. Xun, X. C.; Zhao, X.; Li, Q.; Zhao, B.; Ouyang, T.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Zhang, Y. Tough and degradable self-healing elastomer from synergistic soft-hard segments design for biomechano-robust artificial skin. ACS Nano 2021, 15, 20656–20665.

    Article  CAS  PubMed  Google Scholar 

  34. Sun, P. H.; Wang, S. H.; Huang, Z.; Zhang, L.; Dong, F. H.; Xu, X.; Liu, H. Water-resistant, strong, degradable and recyclable rosin-grafted cellulose composite paper. Green Chem. 2022, 24, 7519–7530.

    Article  CAS  Google Scholar 

  35. Huo, S. Q.; Sai, T.; Ran, S. Y.; Guo, Z. H.; Fang, Z. P.; Song, P. A.; Wang, H. A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins. Compos. Part B: Eng. 2022, 234, 109701.

    Article  CAS  Google Scholar 

  36. Zhang, H. Y.; Van Hertrooij, A.; Schnitzer, T.; Chen, Y. J.; Majumdar, S.; Van Benthem, R. A. T. M.; Sijbesma, R. P.; Heuts, J. P. A. Benzene tetraamide: A covalent supramolecular dual motif in dynamic covalent polymer networks. Macromolecules 2023, 56, 6452–6460.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, X. D.; Li, L. J.; Seraji, S. M.; Liu, L.; Jiang, Z.; Xu, Z. G.; Li, X.; Zhao, S.; Wang, H.; Song, P. A. Bioinspired, strong, and tough nanostructured poly(vinyl alcohol)/inositol composites: How hydrogen-bond cross-linking works. Macromolecules 2021, 54, 9510–9521.

    Article  ADS  CAS  Google Scholar 

  38. Yao, Z.; Wu, D. F.; Chen, C.; Zhang, M. Creep behavior of polyurethane nanocomposites with carbon nanotubes. Compos. Part A: Appl. Sci. Manuf. 2013, 50, 65–72.

    Article  CAS  Google Scholar 

  39. Huo, S. Q.; Wang, J.; Yang, S.; Li, C.; Wang, X. L.; Cai, H. P. Synthesis of a DOPO-containing imidazole curing agent and its application in reactive flame retarded epoxy resin. Polym. Degrad. Stab. 2019, 159, 79–89.

    Article  CAS  Google Scholar 

  40. Huang, Z.; Wang, S. B.; Ren, C. Y.; Liu, H.; Xu, X.; Song, Z. Q. Preparation and application of rosin modified siloxane-based flame retardant. Chem. Ind. For. Prod. 2022, 42, 71–79.

    CAS  Google Scholar 

  41. Yao, M. H.; Liu, L. H.; Ma, C. C.; Zhang, H.; Zhang, Y.; Song, R. Y.; Fang, Z. P.; Song, P. A. A lysine-derived flame retardant for improved flame retardancy, crystallinity, and aqueous-phase degradation of polylactide. Chem. Eng. J. 2023, 462, 142189

    Article  CAS  Google Scholar 

  42. Yanagisawa, Y.; Nan, Y. L.; Okuro, K.; Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2018, 359, 72–76.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Liu, Z.; Fan, X. L.; Zhang, J. L.; Chen, L. X.; Tang, Y. S.; Kong, J.; Gu, J. W. PBO fibers/fluorine-containing liquid crystal compound modified cyanate ester wave-transparent laminated composites with excellent mechanical and flame retardance properties. J. Mater. Sci. Technol. 2023, 152, 16–29.

    Article  CAS  Google Scholar 

  44. Zhong, X.; Yang, X. T.; Ruan, K. P.; Zhang, J. L.; Zhang, H. T.; Gu, J. W. Discotic liquid crystal epoxy resins integrating intrinsic high thermal conductivity and intrinsic flame retardancy. Macromol. Rapid Commun. 2022, 43, 2100580.

    Article  CAS  Google Scholar 

  45. Luo, Y.; Miao, Y. P.; Wang, H. M.; Dong, K.; Hou, L.; Xu, Y. Y.; Chen, W. C.; Zhang, Y.; Zhang, Y. Y.; Fan, W. Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field. Nano Res. 2023, 16, 7600–7608.

    Article  ADS  CAS  Google Scholar 

  46. Yao, K. J.; Wang, J. F.; Zhang, W. J.; Lee, J. S.; Wang, C. P.; Chu, F. X.; He, X. M.; Tang, C. B. Degradable rosin-ester-caprolactone graft copolymers. Biomacromolecules 2011, 12, 2171–2177.

    Article  CAS  PubMed  Google Scholar 

  47. Meabe, L.; Sardon, H.; Mecerreyes, D. Hydrolytically degradable poly(ethylene glycol) based polycarbonates by organocatalyzed condensation. Eur. Polym. J. 2017, 95, 737–745.

    Article  CAS  Google Scholar 

  48. Liu, Q. Y.; Zhou, L.; Fan, D.; Guan, M. Z.; Ma, Q. Z.; Li, S.; Ouyang, X. P.; Qiu, X. Q.; Fan, W. Adsorption-enhanced glucan oligomer production from cellulose hydrolysis over hyper-cross-linked polymer in molten salt hydrate. ACS Appl. Mater. Interfaces 2021, 13, 52082–52091.

    Article  CAS  PubMed  Google Scholar 

  49. Schusser, S.; Menzel, S.; Bäcker, M.; Leinhos, M.; Poghossian, A.; Wagner, P.; Schöning, M. J. Degradation of thin poly(lactic acid) films: Characterization by capacitance-voltage, atomic force microscopy, scanning electron microscopy and contact-angle measurements. Electrochim. Acta 2013, 113, 779–784.

    Article  CAS  Google Scholar 

  50. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work acknowledged the financial support of the National Natural Science Foundation of China (Nos. 32301545 and 32071712), the Jiangsu Key Laboratory of Biomass Energy and Materials (No. JSBEM-S-202312), and the Australian Research Council (Nos. FT190100188 and LP230100278).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Zhang or Pingan Song.

Electronic Supplementary Material

12274_2023_6397_MOESM1_ESM.pdf

Fire-retardant, anti-dripping, biodegradable and biobased polyurethane elastomers enabled by hydrogen-bonding with cellulose nanocrystals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Zhang, T., Peng, H. et al. Fire-retardant, anti-dripping, biodegradable and biobased polyurethane elastomers enabled by hydrogen-bonding with cellulose nanocrystals. Nano Res. 17, 2186–2194 (2024). https://doi.org/10.1007/s12274-023-6397-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6397-0

Keywords

Navigation