Skip to main content
Log in

Nanocomposite: Keggin-type Co4-polyoxometalate@cobalt-porphyrin linked graphdiyne for hydrogen evolution in seawater

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Polyoxometalate-based nanocomposites with electrocatalytic activity have been applied in hydrogen evolution reactions (HER). Seawater as the main water resource on the earth should be developed as the water electrolysis to prepare high-purity hydrogen. In this paper, we used two synthesis strategies to prepare the nanocomposite Co4-POM@Co-PGDY (Co4-POM: the Kegging-type microcrystals of K10[Co4(PW9O34)2] and Co-PGDY: cobalt-porphyrin linked graphdiyne) with excellent activity for HER. Co-PGDY as the porous material is applied not only as the protection of microcrystals towards the metal ion in seawater but also as the co-electrocatalyst of Co4-POM. Co4-POM@Co-PGDY exhibits excellent HER performance in seawater electrolytes with low overpotential and high stability at high density. Moreover, we have observed a key H3O+ intermediate emergence on the surface of nanocomposite during hydrogen evolution process in seawater by Raman synchrotron radiation-based Fourier transform infrared (SR-FTIR). The results in this paper provide an effective strategy for preparing polyoxometalate-based electrocatalysts with high-performance toward hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Song, H. J.; Yoon, H.; Ju, B.; Lee, D. Y.; Kim, D. W. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1−xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2020, 10, 702–709.

    Article  CAS  Google Scholar 

  4. Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Wang, Y.; Dong, J. C.; Wu, K. L.; Cheong, W. C.; Mao, J. J. et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.

    Article  Google Scholar 

  5. Møller, K. T.; Jensen, T. R.; Akiba, E.; Li, H. W. Hydrogen-A sustainable energy carrier. Prog. Nat. Sci.: Mater. Int. 2017, 27, 34–40.

    Article  Google Scholar 

  6. Wu, J. D.; Wang, D. P.; Wan, S. A.; Liu, H. L.; Wang, C.; Wang, X. An efficient cobalt phosphide electrocatalyst derived from cobalt phosphonate complex for all-pH hydrogen evolution reaction and overall water splitting in alkaline solution. Small, 2020, 16, 1900550.

    Article  CAS  Google Scholar 

  7. Wang, H. Q.; Xu, J. H.; Zhang, Q. B.; Hu, S. X.; Zhou, W. J.; Liu, H.; Wang, X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2112362.

    Article  CAS  Google Scholar 

  8. Zhang, L. L.; Shi, X. X.; Xu, A. J.; Zhong, W. W.; Zhang, J. T.; Shen, S. J. Novel CoP/CoMoP2 heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-023-6270-1.

  9. Poudel, M. B.; Logeshwaran, N.; Kim, A. R.; Karthikeyan, S. C.; Vijayapradeep, S.; Yoo, D. J. Integrated core–shell assembly of Ni3S2 nanowires and CoMoP nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting. J. Alloys Compd. 2023, 960, 170678.

    Article  CAS  Google Scholar 

  10. Wang, Y. D.; Wu, W.; Chen, R. Z.; Lin, C. X.; Mu, S. C.; Cheng, N. C. Reduced water dissociation barrier on constructing Pt−Co/CoOx interface for alkaline hydrogen evolution. Nano Res. 2022, 15, 4958–4964.

    Article  ADS  CAS  Google Scholar 

  11. Jiang, S. H.; Zhang, R. Y.; Liu, H. X.; Rao, Y.; Yu, Y. N.; Chen, S.; Yue, Q.; Zhang, Y. N.; Kang, Y. J. Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 6461–6466.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

    Article  ADS  CAS  Google Scholar 

  13. Yu, W. L.; Liu, H. R.; Zhao, Y.; Fu, Y. L.; Xiao, W. P.; Dong, B.; Wu, Z. X.; Chai, Y. M.; Wang, L. Amorphous NiOn coupled with trace PtOx. toward superior electrocatalytic overall water splitting in alkaline seawater media. Nano Res. 2023, 16, 6517–6530.

    Article  ADS  CAS  Google Scholar 

  14. Gao, Y.; Xue, Y. R.; Qi, L.; Xing, C. Y.; Zheng, X. C.; He, F.; Li, Y. L. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat. Commun. 2022, 13, 5227.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  15. Guo, L. L.; Yu, Q. P.; Zhai, X. J.; Chi, J. Q.; Cui, T.; Zhang, Y.; Lai, J. P.; Wang, L. Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater. Nano Res. 2022, 15, 8846–8856.

    Article  ADS  CAS  Google Scholar 

  16. Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.

    Article  ADS  CAS  Google Scholar 

  17. Ma, F. X.; Wu, H. B.; Xia, B. Y.; Xu, C. Y.; Lou, X. W. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 15395–15399.

    Article  CAS  Google Scholar 

  18. Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.

    Article  ADS  PubMed  CAS  Google Scholar 

  19. Yang, Y.; Yao, H. Q.; Yu, Z. H.; Islam, S. M.; He, H. Y.; Yuan, M. W.; Yue, Y. H.; Xu, K.; Hao, W. C.; Sun, G. B. et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 2019, 141, 10417–10430.

    Article  PubMed  CAS  Google Scholar 

  20. Mukhopadhyay, S.; Debgupta, J.; Singh, C.; Kar, A.; Das, S. K. A Keggin polyoxometalate shows water oxidation activity at neutral pH: POM@ZIF-8, an efficient and robust electrocatalyst. Angew. Chem., Int. Ed. 2018, 57, 1918–1923.

    Article  CAS  Google Scholar 

  21. Wang, Z. L.; Hao, X. F.; Jiang, Z.; Sun, X. P.; Xu, D.; Wang, J.; Zhong, H. X.; Meng, F. L.; Zhang, X. B. C and N hybrid coordination derived Co−C−N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15070–15073.

    Article  PubMed  CAS  Google Scholar 

  22. Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

    Article  PubMed  CAS  Google Scholar 

  23. Ni, B.; Zhang, Q. H.; Ouyang, C.; Zhang, S. M.; Yu, B.; Zhuang, J.; Gu, L.; Wang, X. The synthesis of sub-nano-thick Pd nanobelt-based materials for enhanced hydrogen evolution reaction activity. CCS Chem. 2019, 2, 642–654.

    Article  Google Scholar 

  24. Liu, F.; Shi, C. X.; Guo, X. L.; He, Z. X.; Pan, L.; Huang, Z. F.; Zhang, X. W.; Zou, J. J. Rational design of better hydrogen evolution electrocatalysts for water splitting: A review. Adv. Sci. 2022, 9, 2200307.

    Article  CAS  Google Scholar 

  25. Zhou, B. H.; Gao, R. J.; Zou, J. J.; Yang, H. M. Surface design strategy of catalysts for water electrolysis. Small 2022, 18, 2202336.

    Article  CAS  Google Scholar 

  26. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    Article  CAS  Google Scholar 

  27. Miras, H. N.; Yan, J.; Long, D. L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430.

    Article  PubMed  CAS  Google Scholar 

  28. Sun, H.; Xu, X. M.; Jing, C. J.; Shang, W. H.; Wang, Y. C.; Zeng, M. L.; Jia, Z. Y. Composite cluster: Co5.7Ni2.3W12O42(OH)4@fluorographdiyne as a stable electrode for sustained electrochemical oxygen evolution under high current conditions. Mater. Chem. Front. 2021, 5, 7666–7674.

    Article  CAS  Google Scholar 

  29. Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem., Int. Ed. 2020, 59, 20779–20793.

    Article  CAS  Google Scholar 

  30. Miao, J.; Lang, Z. L.; Zhang, X. Y.; Kong, W. G.; Peng, O. W.; Yang, Y.; Wang, S. P.; Cheng, J. J.; He, T. C.; Amini, A. et al. Polyoxometalate-derived hexagonal molybdenum nitrides (MXenes) supported by boron, nitrogen codoped carbon nanotubes for efficient electrochemical hydrogen evolution from seawater. Adv. Funct. Mater. 2019, 29, 1805893.

    Article  Google Scholar 

  31. Miras, H. N.; Vilà-Nadal, L.; Cronin, L. Polyoxometalate based open-frameworks (POM-OFs). Chem. Soc. Rev. 2014, 43, 5679–5699.

    Article  PubMed  CAS  Google Scholar 

  32. Qin, J. S.; Du, D. Y.; Guan, W.; Bo, X. J.; Li, Y. F.; Guo, L. P.; Su, Z. M.; Wang, Y. Y.; Lan, Y. Q.; Zhou, H. C. Ultrastable polymolybdate-based metal organic frameworks as highly active electrocatalysts for hydrogen generation from water. J. Am. Chem. Soc. 2015, 137, 7169–7177.

    Article  PubMed  CAS  Google Scholar 

  33. Freire, C.; Fernandes, D. M.; Nunes, M.; Abdelkader, V. K. POM & MOF-based electrocatalysts for energy-related reactions. ChemCatChem 2018, 10, 1703–1730.

    Article  CAS  Google Scholar 

  34. Xing, C. Y.; Xue, Y. R.; Huang, B. L.; Yu, H. D.; Hui, L.; Fang, Y.; Liu, Y. X.; Zhao, Y. J.; Li, Z. B.; Li, Y. L. Fluorographdiyne: A metal-free catalyst for applications in water reduction and oxidation. Angew. Chem., Int. Ed. 2019, 58, 13897–13903.

    Article  CAS  Google Scholar 

  35. Xu, X. M.; Wang, Y. C.; Shang, W. H.; Wang, F.; Zhang, Q.; Li, K.; Wu, M.; Jia, Z. Y. Cobalt carbonate hydroxides anchored on nanoscale pyrenely-graphdiyne nanowalls toward bifunctional electrocatalysts with high performance and stability for overall water splitting. New J. Chem. 2023, 47, 11594–11601.

    Article  CAS  Google Scholar 

  36. Kim, K.; Kang, T.; Kim, M.; Kim, J. Three-dimensional entangled and twisted structures of nitrogen doped poly-(1,4-diethynylbenzene) chain combined with cobalt single atom as a highly efficient bifunctional electrocatalyst. Appl. Catal. B: Environ. 2020, 275, 119107.

    Article  CAS  Google Scholar 

  37. Lv, Q.; Wang, N.; Si, W. Y.; Hou, Z. F.; Li, X. D.; Wang, X.; Zhao, F. H.; Yang, Z.; Zhang, Y. L.; Huang, C. S. Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries. Appl. Catal. B: Environ. 2020, 261, 118234.

    Article  CAS  Google Scholar 

  38. Zheng, X. C.; Chen, S. A.; Li, J. Z.; Wu, H.; Zhang, C.; Zhang, D. Y.; Chen, X.; Gao, Y.; He, F.; Hui, L. et al. Two-dimensional carbon graphdiyne: Advances in fundamental and application research. ACS Nano 2023, 17, 14309–14346.

    Article  PubMed  CAS  Google Scholar 

  39. Wang, J.; Kong, H.; Zhang, J. Y.; Hao, Y.; Shao, Z. P.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717.

    Article  CAS  Google Scholar 

  40. Lin, Q. P.; Bu, X. H.; Kong, A. G.; Mao, C. Y.; Bu, F.; Feng, P. Y. Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts. Adv. Mater. 2015, 27, 3431–3436.

    Article  PubMed  CAS  Google Scholar 

  41. Ma, Y. Y.; Wu, C. X.; Feng, X. J.; Tan, H. Q.; Yan, L. K.; Liu, Y.; Kang, Z. H.; Wang, E. B.; Li, Y. G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 2017, 10, 788–798.

    Article  CAS  Google Scholar 

  42. Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2018, 9, 1460.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Finke, R. G.; Droege, M. W.; Domaille, P. J. Trivacant heteropolytungstate derivatives. 3.1 Rational syntheses, characterization, two-dimensional 183W NMR, and properties of P2W18M4(H2O)2O6810− and P4W30M4(H2O)2O11216− (M = Co, Cu, Zn). Inorg. Chem 1987, 26, 3886–3896

    Article  CAS  Google Scholar 

  44. Balula, S. S.; Granadeiro, C. M.; Barbosa, A. D. S.; Santos, I. C. M. S.; Cunha-Silva, L. Multifunctional catalyst based on sandwich-type polyoxotungstate and MIL-101 for liquid phase oxidations. Catal. Today 2013, 210, 142–148.

    Article  CAS  Google Scholar 

  45. Haley, M. M. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl. Chem. 2008, 80, 519–532.

    Article  CAS  Google Scholar 

  46. Zhao, Y.; Watanabe, K.; Hashimoto, K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. J. Am. Chem. Soc. 2012, 134, 19528–19531.

    Article  PubMed  CAS  Google Scholar 

  47. Wang, J.; Ciucci, F. In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Appl. Catal B: Environ. 2019, 254, 292–299.

    Article  CAS  Google Scholar 

  48. Thilagavathi, T.; Venugopal, D.; Thangaraju, D.; Marnadu, R.; Palanivel, B.; Imran, M.; Shkir, M.; Ubaidullah, M.; AlFaify, S. A facile co-precipitation synthesis of novel WO3/NiWO4 nanocomposite with improved photocatalytic activity. Mater. Sci. Semicond. Process. 2021, 133, 105970.

    Article  CAS  Google Scholar 

  49. Wu, Z. S.; Chen, L.; Liu, J. Z.; Parvez, K.; Liang, H. W.; Shu, J.; Sachdev, H.; Graf, R.; Feng, X. L.; Müllen, K. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers. Adv. Mater. 2014, 26, 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  50. Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002–16005.

    Article  PubMed  CAS  Google Scholar 

  51. Yuan, S. W.; Shui, J. L.; Grabstanowicz, L.; Chen, C.; Commet, S.; Reprogle, B.; Xu, T.; Yu, L. P.; Liu, D. J. A highly active and support-free oxygen reduction catalyst prepared from ultrahigh-surface-area porous polyporphyrin. Angew. Chem., Int. Ed. 2013, 52, 8349–8353.

    Article  CAS  Google Scholar 

  52. Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano 2018, 12, 9635–9638.

    Article  PubMed  CAS  Google Scholar 

  53. Ubaidullah, M.; Al-Enizi, A. M.; Ahamad, T.; Shaikh, S. F.; Al-Abdrabalnabi, M. A.; Samdani, M. S.; Kumar, D.; Alam, M. A.; Khan, M. Fabrication of highly porous N-doped mesoporous carbon using waste polyethylene terephthalate bottle-based MOF-5 for high performance supercapacitor. J. Energy Storage 2021, 33, 102125.

    Article  Google Scholar 

  54. Hwang, S. M.; Park, J. S.; Kim, Y.; Go, W.; Han, J.; Kim, Y.; Kim, Y. Rechargeable seawater batteries-from concept to applications. Adv. Mater. 2019, 31, 1804936.

    Article  Google Scholar 

  55. Wang, X. S.; Xu, C. C.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 2019, 10, 4876.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21831001, 21801014, 22171024, and 22202037) and the Fundamental Research Funds for the Central Universities (No. 2412023QD019). Tests were supported by the Analysis & Testing Center of Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zihao Xing, Zhiyu Jia or Guo-Yu Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ping, J., He, D., Wang, F. et al. Nanocomposite: Keggin-type Co4-polyoxometalate@cobalt-porphyrin linked graphdiyne for hydrogen evolution in seawater. Nano Res. 17, 1281–1287 (2024). https://doi.org/10.1007/s12274-023-6393-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6393-4

Keywords

Navigation