Skip to main content
Log in

One-step calcination synthesis of interface-coherent crystallized and surface-passivated LiNi0.5Mn1.5O4 for high-voltage lithium-ion battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

LiNi0.5Mn1.5O4 (LNMO) with a spinel crystal structure presents a compelling avenue towards the development of economic cobalt-free and high voltage (∼ 5 V) lithium-ion batteries. Nevertheless, the elevated operational voltage of LNMO gives rise to pronounced interfacial interactions between the distorted surface lattices characterized by Jahn–Teller (J–T) distortions and the electrolyte constituents. Herein, a localized crystallized coherent LaNiO3 and surface passivated Li3PO4 layer is deposited on LNMO via a one-step calcination process. As evidenced by transmission electron microscopy (TEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and density functional theory (DFT) calculation, the epitaxial growth of LaNiO3 along the LNMO lattice can effectively stabilize the structure and inhibit irreversible phase transitions, and the Li3PO4 surface coating can prevent the chemical reaction between HF and transition metals without sacrificing the electrochemical activity. In addition, the ionic conductive Li3PO4 and atomic wetting inter-layer enables fast charge transfer transport property. Consequently, the LNMO material enabled by the lattice bonding and surface passivating features, demonstrates high performance at high current densities and good capacity retention during long-term test. The rational design of interface coherent engineering and surface coating layers of the LNMO cathode material offers a new perspective for the practical application of high-voltage lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, X.; Chen, H. X.; Liu, J. J.; Liu, H. H.; Wang, P.; Huang, K.; Li, C.; Chen, S. Y.; Yang, Y. A peanut shell inspired scalable synthesis of three-dimensional carbon coated porous silicon particles as an anode for lithium-ion batteries. Electrochim. Acta 2015, 156, 11–19.

    Article  CAS  Google Scholar 

  2. Luo, L. S.; Zheng, F.; Gao, H. W.; Lan, C. F.; Sun, Z. F.; Huang, W.; Han, X.; Zhang, Z. Q.; Su, P. F.; Wang, P. et al. Tuning the electron transport behavior at Li/LATP interface for enhanced cyclability of solid-state Li batteries. Nano Res. 2023, 16, 1634–1641.

    Article  CAS  Google Scholar 

  3. Zhao, S.; Ma, M. Z.; Gao, L. Y.; Gu, L. H.; Chen, M. F.; Han, G. D.; Yang, T. R.; Chen, J. Z.; Qi, D. F.; Wang, P. et al. Engineering the Li-ion flux and interfacial chemistry toward a stable Li metal anode via a simple separator coating strategy. New J. Chem. 2023, 47, 7986–7994.

    Article  CAS  Google Scholar 

  4. Stüble, P.; Mereacre, V.; Geßwein, H.; Binder, J. R. On the composition of LiNi0.5Mn1.5O4 cathode active materials. Adv. Energy Mater. 2023, 13, 2203778.

    Article  Google Scholar 

  5. Liang, G. M.; Peterson, V. K.; See, K. W.; Guo, Z. P.; Pang, W. K. Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: Current achievements and future prospects. J. Mater. Chem. A 2020, 8, 15373–15398.

    Article  CAS  Google Scholar 

  6. Li, T.; Chen, Z. Y.; Bai, F. W.; Li, C. Z.; Li, Y. Diluted low concentration electrolyte for interphase stabilization of high-voltage LiNi0.5Mn1.5O4 cathode. J. Energy Chem. 2023, 81, 404–409.

    Article  CAS  Google Scholar 

  7. Zou, Z. Y.; Xu, H. T.; Zhang, H. R.; Tang, Y.; Cui, G. L. Electrolyte therapy for improving the performance of LiNi0.5Mn1.5O4 cathodes assembled lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 21368–21385.

    Article  CAS  PubMed  Google Scholar 

  8. Piao, N.; Wang, P. F.; Chen, L.; Deng, T.; Fan, X. L.; Wang, L.; He, X. M. Nonflammable all-fluorinated electrolytes enabling high-power and long-life LiNi0.5Mn1.5O4/Li4Ti5O12 lithium-ion batteries. Nano Energy 2023, 105, 108040.

    Article  CAS  Google Scholar 

  9. Liu, H. P.; Liang, G. M.; Gao, C.; Bi, S. F.; Chen, Q.; Xie, Y.; Fan, S. S.; Cao, L. X.; Pang, W. K.; Guo, Z. P. Insight into the improved cycling stability of sphere-nanorod-like micro-nanostructured high voltage spinel cathode for lithium-ion batteries. Nano Energy 2019, 66, 104100.

    Article  CAS  Google Scholar 

  10. Zou, F.; Nallan, H. C.; Dolocan, A.; Xie, Q.; Li, J. Y.; Coffey, B. M.; Ekerdt, J. G.; Manthiram, A. Long-life LiNi0.5Mn1.5O4/graphite lithium-ion cells with an artificial graphite-electrolyte interface. Energy Storage Mater. 2021, 43, 499–508.

    Article  Google Scholar 

  11. Han, Y.; Jiang, Y. S.; Xia, Y.; Deng, L.; Que, L. F.; Yu, F. D.; Wang, Z. B. Suppressed phase separation in spinel LiNi0.5Mn1.5O4 cathode via interstitial sites modulation. Nano Energy 2022, 91, 106636.

    Article  CAS  Google Scholar 

  12. Sun, Y. J.; Wang, C. H.; Huang, W. J.; Zhao, G. F.; Duan, L. Y.; Liu, Q.; Wang, S. M.; Fraser, A.; Guo, H.; Sun, X. L. One-step calcination synthesis of bulk-doped surface-modified Ni-rich cathodes with superlattice for long-cycling Li-ion batteries. Angew Chem., Int. Ed. 2023, 62, e202300962.

    Article  CAS  Google Scholar 

  13. Dong, J. Y.; Wu, F.; Zhao, J. Y.; Shi, Q.; Lu, Y.; Li, N.; Cao, D. Y.; Li, W. B.; Hao, J. N.; Yang, X. L. et al. Multifunctional self-reconstructive cathode/electrolyte interphase layer for cobalt-free Li-rich layered oxide cathode. Energy Storage Mater. 2023, 60, 102798.

    Article  Google Scholar 

  14. Xu, T. H.; Li, Y. P.; Wang, D. D.; Wu, M. Y.; Pan, D.; Zhao, H. L.; Bai, Y. Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode material by YPO4 surface modification. ACS Sustain. Chem. Eng. 2018, 6, 5818–5825.

    Article  CAS  Google Scholar 

  15. Kaur, G.; Nesvaderani, F.; Hadidi, L.; Dunn, D.; Campbell, S.; Gates, B. D. Unraveling the role of composite Li3PO4/ZrO2 coatings prepared by dry milling on high voltage spinel cathodes for lithium-ion batteries: Insights into lattice strain, thermal behavior, material compatibility, and electrochemical performance. ACS Appl. Energy Mater. 2022, 5, 14335–14352.

    Article  CAS  Google Scholar 

  16. Cho, H. M.; Chen, M. V.; MacRae, A. C.; Meng, Y. S. Effect of surface modification on nano-structured LiNi0.5Mn1.5O4 spinel materials. ACS Appl. Mater. Interfaces 2015, 7, 16231–16239.

    Article  CAS  PubMed  Google Scholar 

  17. Han, X.; Xu, M.; Gu, L.-H.; Lan, C.-F.; Chen, M.-F.; Lu, J.-J.; Sheng, B.-F.; Wang, P.; Chen, S.-Y.; Chen, J.-Z. Monothetic and conductive network and mechanical stress releasing layer on micron-silicon anode enabling high-energy solid-state battery. Rare Metals, in press, https://doi.org/10.1007/s12598-023-02498-4.

  18. Jiao, X. W.; Rao, L.; Yap, J.; Yu, C. Y.; Kim, J. H. Stabilizing cathode-electrolyte interphase of LiNi0.5Mn1.5O4 high-voltage spinel by blending garnet solid electrolyte in lithium-ion batteries. J. Power Sources 2023, 561, 232748.

    Article  CAS  Google Scholar 

  19. Shu, W.; Jian, Z. L.; Zhou, J.; Zheng, Y.; Chen, W. Boosting the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 by rough coating with the superionic conductor Li7La3Zr2O12. ACS Appl. Mater. Interfaces 2021, 13, 54916–54923.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, J. D.; Wu, Z. H.; Yu, M.; Hu, H. L.; Zhang, Y. D.; Zhang, K.; Du, Z. X.; Cheng, F. Y.; Chen, J. Building homogenous Li2TiO3 coating layer on primary particles to stabilize Li-rich Mn-based cathode materials. Small 2022, 18, 2106337.

    Article  CAS  Google Scholar 

  21. Sun, Y. J.; Huang, W. J.; Zhao, G. F.; Liu, Q.; Duan, L. Y.; Wang, S. M.; An, Q.; Wang, H.; Yang, Y. X.; Zhang, C. H. et al. LiNi0.9Co0.09Mo0.01O2 cathode with Li3PO4 coating and Ti doping for next-generation lithium-ion batteries. ACS Energy Lett. 2023, 8, 1629–1638.

    Article  CAS  Google Scholar 

  22. Bunyanidhi, P.; Phattharasupakun, N.; Tomon, C.; Duangdangchote, S.; Kidkhunthod, P.; Sawangphruk, M. Mechanofusing garnet solid electrolyte on the surface of Ni-rich layered oxide cathode towards high-rate capability of cylindrical Li-ion battery cells. J. Power Sources 2022, 549, 232043.

    Article  CAS  Google Scholar 

  23. Wang, L. G.; Liu, T. C.; Wu, T. P.; Lu, J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 2022, 611, 61–67.

    Article  CAS  PubMed  Google Scholar 

  24. Wan, T. H.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRTtools. Electrochim. Acta 2015, 184, 483–499.

    Article  CAS  Google Scholar 

  25. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  26. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  27. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  28. Liu, B.; Xu, B.; Wu, M. S.; Ouyang, C. Y. First-principles GGA + U study on structural and electronic properties in LiMn0.5Ni0.5O2, LiMn0.5Co0.5O2 and LiCo0.5Ni0.5O2. Int. J. Electrochem. Sci. 2016, 11, 432–445.

    Article  CAS  Google Scholar 

  29. Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 2004, 25, 1463–1473.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu, X. B.; Schülli, T. U.; Yang, X. W.; Lin, T. E.; Hu, Y. X.; Cheng, N. Y.; Fujii, H.; Ozawa, K.; Cowie, B.; Gu, Q. F. et al. Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling. Nat. Commun. 2022, 13, 1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao, B. W.; Liu, H. S.; Liu, J.; Sun, Q.; Wang, B. Q.; Kaliyappan, K.; Zhao, Y.; Banis, M. N.; Liu, Y. L.; Li, R. Y. et al. Nanoscale manipulation of spinel lithium nickel manganese oxide surface by multisite Ti occupation as high-performance cathode. Adv. Mater. 2017, 29, 1703764.

    Article  Google Scholar 

  32. Zhang, N.; Long, X. H.; Wang, Z.; Yu, P. F.; Han, F. D.; Fu, J. M.; Ren, G. X.; Wu, Y. R.; Zheng, S.; Huang, W. C. et al. Mechanism study on the interfacial stability of a lithium garnet-type oxide electrolyte against cathode materials. ACS Appl. Energy Mater. 2018, 1, 5968–5976.

    Article  CAS  Google Scholar 

  33. Guo, J.; Li, Y. J.; Chen, Y. X.; Deng, S. Y.; Zhu, J.; Wang, S. L.; Zhang, J. P.; Chang, S. H.; Zhang, D. W.; Xi, X. M. Stable interface Co3O4-coated LiNi0.5Mn1.5O4 for lithium-ion batteries. J. Alloys Compd. 2019, 811, 152031.

    Article  CAS  Google Scholar 

  34. Xu, M.; Yang, M.; Chen, M. F.; Gu, L. H.; Luo, L. S.; Chen, S. Y.; Chen, J. Z.; Liu, B.; Han, X. Enabling structural and interfacial stability of 5 V spinel LiNi0.5Mn1.5O4 cathode by a coherent interface. J. Energy Chem. 2023, 76, 266–276.

    Article  CAS  Google Scholar 

  35. Mickevičius, S.; Grebinskij, S.; Bondarenka, V.; Vengalis, B.; Šliužienė, K.; Orlowski, B. A.; Osinniy, V.; Drube, W. Investigation of epitaxial LaNiO3−x thin films by high-energy XPS. J. Alloys Compd. 2006, 423, 107–111.

    Article  Google Scholar 

  36. Luo, Z. Y.; Zhou, Z. W.; He, Z. J.; Sun, Z. M.; Zheng, J. C.; Li, Y. J. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode by surface modification using La-Co-O compound. Ceram. Int. 2021, 47, 2656–2664.

    Article  CAS  Google Scholar 

  37. Liu, S. Y.; Zhang, C. C.; Su, Q. L.; Li, L. Y.; Su, J. M.; Huang, T.; Chen, Y. B.; Yu, A. S. Enhancing electrochemical performance of LiNi0.6Co0.2Mn0.2O2 by lithium-ion conductor surface modification. Electrochim. Acta 2017, 224, 171–177.

    Article  CAS  Google Scholar 

  38. Shen, Y. B.; Wu, Y. Q.; Zhang, D. Y.; Liang, Y.; Yin, D. M.; Wang, L. M.; Wang, L. C.; Cao, J. C.; Cheng, Y. Stabilization of high-voltage layered oxide cathode by utilizing residual lithium to form NASICON-type nanoscale functional coating. Nano Res. 2023, 16, 5973–5982.

    Article  CAS  Google Scholar 

  39. Li, Y. P.; Zhang, Q.; Xu, T. H.; Wang, D. D.; Pan, D.; Zhao, H. L.; Bai, Y. LaF3 nanolayer surface modified spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. Ceram. Int. 2018, 44, 4058–4066.

    Article  CAS  Google Scholar 

  40. Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Surface and interface issues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 2016, 28, 3578–3606.

    Article  CAS  Google Scholar 

  41. Lim, G.; Shin, D.; Chae, K. H.; Cho, M. K.; Kim, C.; Sohn, S. S.; Lee, M.; Hong, J. Regulating dynamic electrochemical interface of LiNi0.5Mn1.5O4 spinel cathode for realizing simultaneous Mn and Ni redox in rechargeable lithium batteries. Adv. Energy Mater. 2022, 12, 2202049.

    Article  CAS  Google Scholar 

  42. Lee, E. S.; Nam, K. W.; Hu, E. Y.; Manthiram, A. Influence of cation ordering and lattice distortion on the charge–discharge behavior of LiMn1.5Ni0.5O4 spinel between 5.0 and 2.0 V. Chem. Mater. 2012, 24, 3610–3620.

    Article  CAS  Google Scholar 

  43. Yi, T. F.; Mei, J.; Zhu, Y. R. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J. Power Sources 2016, 316, 85–105.

    Article  CAS  Google Scholar 

  44. Chen, J.; Quattrocchi, E.; Ciucci, F.; Chen, Y. H. Charging processes in lithium-oxygen batteries unraveled through the lens of the distribution of relaxation times. Chem 2023, 9, 2267–2281.

    Article  CAS  Google Scholar 

  45. Fan, X. M.; Hu, G. R.; Zhang, B.; Ou, X.; Zhang, J. F.; Zhao, W. G.; Jia, H. P.; Zou, L. F.; Li, P.; Yang, Y. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 2020, 70, 104450.

    Article  CAS  Google Scholar 

  46. Ou, X.; Liu, T. C.; Zhong, W. T.; Fan, X. M.; Guo, X. Y.; Huang, X. J.; Cao, L.; Hu, J. H.; Zhang, B.; Chu, Y. S. et al. Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material Co-doping strategy. Nat. Commun. 2022, 13, 2319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, Y. Q.; Chen, T. Y.; Hsu, W. D.; Pan, T. Y.; Her, L. J.; Chang, W. M.; Wohlfahrt-Mehrens, M.; Yoshitake, H.; Chang, C. C. An electrolyte additive with boron-nitrogen-oxygen alkyl group enabled stable cycling for high voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. J. Power Sources 2020, 477, 228473.

    Article  CAS  Google Scholar 

  48. Zhang, J.; Li, J. P.; Cao, L. H.; Cheng, W. H.; Guo, Z. Y.; Zuo, X. X.; Wang, C.; Cheng, Y. J.; Xia, Y. G.; Huang, Y. D. Surface-targeted functionalization of nickel-rich cathodes through synergistic slurry additive approach with multi-level impact using minimal quantity. Nano Res., 2023, DOI: https://doi.org/10.1007/s12274-023-5960-z.

  49. Hwang, T.; Lee, J. K.; Mun, J.; Choi, W. Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries. J. Power Sources 2016, 322, 40–48.

    Article  CAS  Google Scholar 

  50. Zheng, X.; Liao, Y.; Zhang, Z. R.; Zhu, J. P.; Ren, F. C.; He, H. J.; Xiang, Y. X.; Zheng, Y. Z.; Yang, Y. Exploring high-voltage fluorinated carbonate electrolytes for LiNi0.5Mn1.5O4 cathode in Li-ion batteries. J. Energy Chem. 2020, 42, 62–70.

    Article  Google Scholar 

  51. Chang, Q.; Wang, F.; Zuo, Z. C.; He, F.; Zhao, Y.; Wang, F. Y.; Li, Y. L. High voltage-stabilized graphdiyne cathode interface. Small 2021, 17, 2102066.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22209075 and 12004145), the Key Science and Technology Plan Project of Ji’an City (No. 20211-015311), and the Natural Science Foundation of Jiangsu Province (No. BK20200800). All the computations were performed on the high-performance computing platform of Jinggangshan University and Shanghai University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Liu, Jizhang Chen or Xiang Han.

Electronic Supplementary Material

12274_2023_6361_MOESM1_ESM.pdf

One-step calcination synthesis of interface-coherent crystallized and surface-passivated LiNi0.5Mn1.5O4 for high-voltage lithium-ion battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Sheng, B., Cheng, Y. et al. One-step calcination synthesis of interface-coherent crystallized and surface-passivated LiNi0.5Mn1.5O4 for high-voltage lithium-ion battery. Nano Res. 17, 4192–4202 (2024). https://doi.org/10.1007/s12274-023-6361-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6361-z

Keywords

Navigation