Skip to main content
Log in

Surface spinel reconstruction to suppress detrimental phase transition for stable LiNi0.8Co0.1Mn0.1O2 cathodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nickel-rich layered oxides are attractive cathode for lithium-ion batteries (LIBs) because of the high energy density and low cost. The critical problem is capacity fading caused by the highly reactive metastable phases under voltages of higher than 4.15 V. Herein, we find that facile Ar/H2 plasma treating could produce oxygen vacancies that will readily transform into homogeneous spinel layer (∼ 6 nm) on the LiNi0.8Co0.1Mn0.1O2 (NCM811) surface after a few cycles of lithiation/delithiation procedure. Owing to the structural matching between spinel and layered structure, the diffusion of Li ions could remain fast upon cycling. Besides, the spinel layer is electrochemically inert, which guarantees surface stabilization and inhibits the detrimental phase transition from H2 to H3 at high voltages. Under the protection of the homogeneous spinel layer, the NCM811 electrode shows superior capacity retention of 91.2% after 200 cycles at the current density of 100 mA·g−1. This work proposes a novel strategy of surface reconstruction to stabilize nickel-rich layered oxide materials for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

    Article  Google Scholar 

  2. Xie, H. Y.; Hao, Z. M.; Xie, S.; Ye, Y. D.; Zhang, W.; Sun, Z. W.; Jin, S.; Ji, H. X.; Chen, J. Molecular sieve based Janus separators for Li-ions redistribution to enable stable lithium deposition. Nano Res. 2022, 15, 5143–5152.

    Article  CAS  Google Scholar 

  3. Zhao, D.; Qin, J. W.; Zheng, L. R.; Guo, D. L.; Wang, J.; Cao, M. H. Covalent interfacial coupling of vanadium nitride with nitrogen-rich carbon textile boosting its lithium storage performance as binder-free anode. Nano Res. 2021, 14, 4336–4346.

    Article  CAS  Google Scholar 

  4. Zhu, J. H.; Chen, Z.; Jia, L.; Lu, Y. Q.; Wei, X. R.; Wang, X. N.; Wu, W. D.; Han, N.; Li, Y. G.; Wu, Z. X. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications. Nano Res. 2019, 12, 2250–2258.

    Article  CAS  Google Scholar 

  5. Lai, Y. J.; Li, Z. J.; Zhao, W. X.; Cheng, X. N.; Xu, S.; Yu, X.; Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.

    Article  CAS  Google Scholar 

  6. Han, X.; Zhou, W. J.; Chen, M. F.; Luo, L. S.; Gu, L. H.; Zhang, Q. B.; Chen, J. Z.; Liu, B.; Chen, S. Y.; Zhang, W. Q. Liquid-phase sintering enabling mixed ionic-electronic interphases and freestanding composite cathode architecture toward high energy solidstate battery. Nano Res. 2022, 15, 6156–6167.

    Article  CAS  Google Scholar 

  7. Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni06Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 8, 1464–1479.

    Article  CAS  Google Scholar 

  8. Xu, G. L.; Liu, Q.; Lau, K. K. S.; Liu, Y. Z.; Liu, X.; Gao, H.; Zhou, X. W.; Zhuang, M. H.; Ren, Y.; Li, J. D. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484–494.

    Article  CAS  Google Scholar 

  9. Ryu, H. H.; Park, K. J.; Yoon, C. S.; Sun, Y. K. Capacity fading of Ni-rich Li[NixCoyMn1−xy]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem. Mater. 2018, 30, 1155–1163.

    Article  CAS  Google Scholar 

  10. Gan, Q. M.; Qin, N.; Zhu, Y. H.; Huang, Z. X.; Zhang, F. C.; Gu, S.; Xie, J. W.; Zhang, K. L.; Lu, L.; Lu, Z. G. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 12594–12604.

    Article  CAS  Google Scholar 

  11. Lin, Q. Y.; Guan, W. H.; Meng, J.; Huang, W.; Wei, X.; Zeng, Y. W.; Li, J. X.; Zhang, Z. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries. Nano Energy 2018, 54, 313–321.

    Article  CAS  Google Scholar 

  12. Zou, L. F.; Zhao, W. G.; Liu, Z. Y.; Jia, H. P.; Zheng, J. M.; Wang, G. F.; Yang, Y.; Zhang, J. G.; Wang, C. M. Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials. ACS Energy Lett. 2018, 3, 2433–2440.

    Article  CAS  Google Scholar 

  13. Chang, B.; Kim, J.; Cho, Y.; Hwang, I.; Jung, M. S.; Char, K.; Lee, K. T.; Kim, K. J.; Choi, J. W. Highly elastic binder for improved cyclability of nickel-rich layered cathode materials in lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2001069.

    Article  CAS  Google Scholar 

  14. Wu, Y. Q.; Ming, H.; Li, M. L.; Zhang, J. L.; Wahyudi, W.; Xie, L. Q.; He, X. M.; Wang, J.; Wu, Y. P.; Ming, J. New organic complex for lithium layered oxide modification: Ultrathin coating, highvoltage, and safety performances. ACS Energy Lett. 2019, 4, 656–665.

    Article  CAS  Google Scholar 

  15. Yoon, W. S.; Nam, K. W.; Jang, D.; Chung, K. Y.; Hanson, J.; Chen, J. M.; Yang, X. Q. Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD. J. Power Sources 2012, 217, 128–134.

    Article  CAS  Google Scholar 

  16. Zhao, S. Y.; Zhu, Y. T.; Qian, Y. C.; Wang, N. N.; Zhao, M.; Yao, J. L.; Xu, Y. H. Annealing effects of TiO2 coating on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery. Mater. Lett. 2020, 265, 127418.

    Article  CAS  Google Scholar 

  17. Myung, S. T.; Izumi, K.; Komaba, S.; Sun, Y. K.; Yashiro, H.; Kumagai, N. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem. Mater. 2005, 17, 3695–3704.

    Article  CAS  Google Scholar 

  18. Sun, H.; Li, H.; Chang, X. Y.; Miao, S. S.; Yuan, X. L.; Zhang, W. X.; Jia, M. J. Nitrogen-doped carbon supported ZnO as highly stable heterogeneous catalysts for transesterification synthesis of ethyl methyl carbonate. J. Colloid Interface Sci. 2021, 581, 126–134.

    Article  CAS  Google Scholar 

  19. Zhang, H. L.; Xu, J. Q.; Zhang, J. J. Surface-coated LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries. Front. Mater. 2019, 6, 309.

    Article  Google Scholar 

  20. Chen, C.; Tao, T.; Qi, W.; Zeng, H.; Wu, Y.; Liang, B.; Yao, Y. B.; Lu, S. G.; Chen, Y. High-performance lithium ion batteries using SiO2-coated LiNi0.5Co0.2Mn0.3O2 microspheres as cathodes. J. Alloys Compd. 2017, 709, 708–716.

    Article  CAS  Google Scholar 

  21. Zhang, W.; Sun, Y. G.; Deng, H. Q.; Ma, J. M.; Zeng, Y.; Zhu, Z. Q.; Lv, Z. S.; Xia, H. R.; Ge, X.; Cao, S. K. et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials. Adv. Mater. 2020, 32, 2000496.

    Article  CAS  Google Scholar 

  22. Piao, J. Y.; Gu, L.; Wei, Z. X.; Ma, J. M.; Wu, J. P.; Yang, W. L.; Gong, Y.; Sun, Y. G.; Duan, S. Y.; Tao, X. S. et al. Phase control on surface for the stabilization of high energy cathode materials of lithium ion batteries. J. Am. Chem. Soc. 2019, 141, 4900–4907.

    Article  CAS  Google Scholar 

  23. Gan, Q. M.; Qin, N.; Wang, Z. Y.; Li, Z. Q.; Zhu, Y. H.; Li, Y. Z.; Gu, S.; Yuan, H. M.; Luo, W.; Lu, L. et al. Revealing mechanism of Li3PO4 coating suppressed surface oxygen release for commercial Ni-rich layered cathodes. ACS Appl. Energy Mater. 2020, 3, 7445–7455.

    Article  CAS  Google Scholar 

  24. Lee, W.; Muhammad, S.; Kim, T.; Kim, H.; Lee, E.; Jeong, M.; Son, S.; Ryou, J. H.; Yoon, W. S. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries. Adv. Energy Mater. 2018, 8, 1701788.

    Article  Google Scholar 

  25. Yoon, C. S.; Choi, M. J.; Jun, D. W.; Zhang, Q.; Kaghazchi, P.; Kim, K. H.; Sun, Y. K. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries. Chem. Mater. 2018, 30, 1808–1814.

    Article  CAS  Google Scholar 

  26. Hu, G. R.; Zhang, M. F.; Wu, L. L.; Peng, Z. D.; Du, K.; Cao, Y. B. High-conductive AZO nanoparticles decorated Ni-rich cathode material with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 33546–33552.

    Article  CAS  Google Scholar 

  27. Liu, W.; Li, X. F.; Xiong, D. B.; Hao, Y. C.; Li, J. W.; Kou, H. R.; Yan, B.; Li, D. J.; Lu, S. G.; Koo, A. et al. Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 2018, 44, 111–120.

    Article  CAS  Google Scholar 

  28. He, H. N.; Huang, D.; Pang, W. K.; Sun, D.; Wang, Q.; Tang, Y. G.; Ji, X. B.; Guo, Z. P.; Wang, H. Y. Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv. Mater. 2018, 30, 1801013.

    Article  Google Scholar 

  29. Li, G. W.; Gopalakrishna, T. Y.; Phan, H.; Herng, T. S.; Ding, J.; Wu, J. S. From open-shell singlet diradicaloid to closed-shell global antiaromatic macrocycles. Angew. Chem., Int. Ed. 2018, 57, 7166–7170.

    Article  CAS  Google Scholar 

  30. Gu, S.; Wu, S. F.; Cao, L. J.; Li, M. C.; Qin, N.; Zhu, J.; Wang, Z. Q.; Li, Y. Z.; Li, Z. Q.; Chen, J. J. et al. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J. Am. Chem. Soc. 2019, 141, 9623–9628.

    Article  CAS  Google Scholar 

  31. Huang, H.; Li, Z. Q.; Gu, S.; Bian, J. C.; Li, Y. Z.; Chen, J. J.; Liao, K. M.; Gan, Q. M.; Wang, Y. F.; Wu, S. S. et al. Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V. Adv. Energy Mater. 2021, 11, 2101864.

    Article  CAS  Google Scholar 

  32. Assat, G.; Iadecola, A.; Foix, D.; Dedryvère, R.; Tarascon, J. M. Direct quantification of anionic redox over long cycling of Li-rich NMC via hard X-ray photoemission spectroscopy. ACS Energy Lett. 2018, 3, 2721–2728.

    Article  CAS  Google Scholar 

  33. Kim, J.; Ma, H.; Cha, H.; Lee, H.; Sung, J.; Seo, M.; Oh, P.; Park, M.; Cho, J. A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy Environ. Sci. 2018, 11, 1449–1459.

    Article  CAS  Google Scholar 

  34. You, Y.; Celio, H.; Li, J. Y.; Dolocan, A.; Manthiram, A. Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 6480–6485.

    Article  CAS  Google Scholar 

  35. Huang, W.; Li, W. J.; Wang, L.; Zhu, H.; Gao, M.; Zhao, H.; Zhao, J. L.; Shen, X. L.; Wang, X. D.; Wang, Z. et al. Structure and charge regulation strategy enabling superior cyclability for Ni-rich layered cathode materials. Small 2021, 17, 2104282.

    Article  CAS  Google Scholar 

  36. Nam, K. W.; Bak, S. M.; Hu, E. Y.; Yu, X. Q.; Zhou, Y.; Wang, X. J.; Wu, L. J.; Zhu, Y. M.; Chung, K. Y.; Yang, X. Q. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 1047–1063.

    Article  CAS  Google Scholar 

  37. Yoon, C. S.; Ryu, H. H.; Park, G. T.; Kim, J. H.; Kim, K. H.; Sun, Y. K. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries. J. Mater. Chem. A 2018, 6, 4126–4132.

    Article  CAS  Google Scholar 

  38. Weigel, T.; Schipper, F.; Erickson, E. M.; Susai, F. A.; Markovsky, B.; Aurbach, D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett. 2019, 4, 508–516.

    Article  CAS  Google Scholar 

  39. Chen, D. C.; Mahmoud, M. A.; Wang, J. H.; Waller, G. H.; Zhao, B.; Qu, C.; El-Sayed, M. A.; Liu, M. L. Operando investigation into dynamic evolution of cathode-electrolyte interfaces in a Li-ion battery. Nano Lett. 2019, 19, 2037–2043.

    Article  CAS  Google Scholar 

  40. Zhang, N.; Long, X. H.; Wang, Z.; Yu, P. F.; Han, F. D.; Fu, J. M.; Ren, G. X.; Wu, Y. R.; Zheng, S.; Huang, W. C. et al. Mechanism study on the interfacial stability of a lithium garnet-type oxide electrolyte against cathode materials. ACS Appl. Energy Mater. 2018, 1, 5968–5976.

    Article  Google Scholar 

  41. Liu, S.; Liu, Z. P.; Shen, X.; Li, W. H.; Gao, Y. R.; Banis, M. N.; Li, M. S.; Chen, K.; Zhu, L.; Yu, R. C. et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide. Adv. Energy Mater. 2018, 8, 1802105.

    Article  Google Scholar 

  42. Zhang, X. D.; Shi, J. L.; Liang, J. Y.; Yin, Y. X.; Zhang, J. N.; Yu, X. Q.; Guo, Y. G. Suppressing surface lattice oxygen release of Lirich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv. Mater. 2018, 30, 1801751.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen (No. JCYJ20200109141640095), Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (No. ZDSYS20200421111401738), the Leading Talents of Guangdong Province Program (No. 2016LJ06C536), the Guangdong-Hong Kong-Macao Joint Laboratory (No. 2019B121205001), and the National Natural Science Foundation of China (No. 21875097). Help on scanning electron microscopy (SEM), TEM, inductively coupled plasma-mass spectrometry (ICP-MS), and XRD characterizations from the Core Research Facilities and DFT simulations from the Center for Computational Science and Engineering at Southern University of Science and Technology are gratefully appreciated. The X-ray absorption fine structure (XAFS) experiments were conducted in the BL02U Beamlines at the Shanghai Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouguang Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Q., Qin, N., Li, Z. et al. Surface spinel reconstruction to suppress detrimental phase transition for stable LiNi0.8Co0.1Mn0.1O2 cathodes. Nano Res. 16, 513–520 (2023). https://doi.org/10.1007/s12274-022-4754-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4754-z

Keywords

Navigation