Skip to main content
Log in

Bioinspired metal-organic framework nanozyme reinforced with thermosensitive hydrogel for regulating inflammatory responses in Parkinson’s disease

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a prevalent neurodegenerative disorder accompanied by movement disorders and neuroinflammatory injury. Anti-inflammatory intervention to regulate oxidative stress in the brain is beneficial for managing PD. However, traditional natural antioxidants have failed to meet the clinical treatment demands due to insufficient activity and sustainability. Herein, Cu-doping zeolite imidazolate framework-8 (ZIF-8) nanozyme is designed to simulate Cu/Zn superoxide dismutase (SOD) by biomimetic mineralization. The nanozyme composite is then integrated into thermosensitive hydrogel (poly (lactic-co-glycolic acid)-poly (ethylene glycol)-poly (lactic-co-glycolic acid) (PLGA-PEG-PLGA)) to form an effective antioxidant system (Cu-ZIF@Hydrogel). The thermosensitive hydrogel incorporating nanozymes demonstrate distinct viscoelastic properties aimed at enhancing local nanozyme adhesion, prolonging nanozyme retention time, and modulating antioxidant activity, thus significantly improving the bioavailability of nanozymes. At the cellular and animal levels of PD, we find that Cu-ZIF@Hydrogel bypass the blood-brain barrier and efficiently accumulate in the nerve cells. Moreover, the Cu-ZIF@Hydrogel significantly alleviate the PD’s behavioral and pathological symptoms by reducing the neuroinflammatory levels in the lesion site. Therefore, the hydrogel-incorporating nanozyme system holds great potential as a simple and reliable avenue for managing PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q.; Li, T.; Yang, J. Y.; Zhao, Z. N.; Tan, K. Y.; Tang, S. W.; Wan, M. M.; Mao, C. Engineered exosomes with independent module/cascading function for therapy of Parkinson’s disease by multistep targeting and multistage intervention method. Adv. Mater. 2022, 34, 2201406.

    Article  CAS  Google Scholar 

  2. Burbulla, L. F.; Song, P. P.; Mazzulli, J. R.; Zampese, E.; Wong, Y. C.; Jeon, S.; Santos, D. P.; Blanz, J.; Obermaier, C. D.; Strojny, C. et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 2017, 357, 1255–1261.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron 2003, 39, 889–909.

    Article  CAS  PubMed  Google Scholar 

  4. Shehadeh, J.; Double, K. L.; Murphy, K. E.; Bobrovskaya, L.; Reyes, S.; Dunkley, P. R.; Halliday, G. M.; Dickson, P. W. Expression of tyrosine hydroxylase isoforms and phosphorylation at serine 40 in the human nigrostriatal system in Parkinson’s disease. Neurobiol. Dis. 2019, 130, 104524.

    Article  CAS  PubMed  Google Scholar 

  5. Fang, X.; Yuan, M.; Zhao, F.; Yu, A. L.; Lin, Q. Y.; Li, S. Q.; Li, H. C.; Wang, X. Y.; Yu, Y. B.; Wang, X. et al. In situ continuous Dopa supply by responsive artificial enzyme for the treatment of Parkinson’s disease. Nat. Commun. 2023, 14, 2661.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, L.; Li, M. C.; Xu, M. Z.; Wang, Z.; Zeng, Z.; Li, Y. Q.; Zhang, Y.; You, R.; Li, C. H.; Guan, Y. Q. Actively targeted gold nanoparticle composites improve behavior and cognitive impairment in Parkinson’s disease mice. Mater. Sci. Eng. C 2020, 114, 111028.

    Article  CAS  Google Scholar 

  7. Liu, T. F.; Xiao, B. W.; Xiang, F.; Tan, J. L.; Chen, Z.; Zhang, X. R.; Wu, C. Z.; Mao, Z. W.; Luo, G. X.; Chen, X. Y. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 2020, 11, 2788.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hao, C. L.; Qu, A. H.; Xu, L. G.; Sun, M. Z.; Zhang, H. Y.; Xu, C. L.; Kuang, H. Chiral molecule-mediated porous CuxO nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 2019, 141, 1091–1099.

    Article  CAS  PubMed  Google Scholar 

  9. Singh, N.; Savanur, M. A.; Srivastava, S.; D’Silva, P.; Mugesh, G. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem., Int. Ed. 2017, 56, 14267–14271.

    Article  CAS  Google Scholar 

  10. Li, Q.; Wu, T. T.; Akakuru, O. U.; Song, N. N.; Liu, W.; Jiang, W.; Fan, K. L. A dual synergetic nanoreactor for managing Parkinson’s disease by regulating inflammation and mitigating oxidative damage. Adv. Func. Mater 2023, 33, 2214826.

    Article  CAS  Google Scholar 

  11. Tian, R. Z.; Ma, H. Y.; Ye, W.; Li, Y. J.; Wang, S. P.; Zhang, Z. R.; Liu, S. D.; Zang, M. S.; Hou, J. X.; Xu, J. Y. et al. Se-containing MOF coated dual-Fe-atom nanozymes with multi-Enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv. Funct. Mater. 2022, 32, 2204025.

    Article  CAS  Google Scholar 

  12. McHugh, E. A.; Liopo, A. V.; Mendoza, K.; Robertson, C. S.; Wu, G.; Wang, Z.; Chen, W. Y.; Beckham, J. L.; Derry, P. J.; Kent, T. A. et al. Oxidized activated charcoal nanozymes: Synthesis, and optimization for in vitro and in vivo bioactivity for traumatic brain injury. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202211239.

  13. Wang, Z. R.; Zhao, Y.; Hou, Y. X.; Tang, G. H.; Zhang, R. F.; Yang, Y. L.; Yan, X. Y.; Fan, K. L. A Thrombin-activated peptide-templated nanozyme for remedying ischemic stroke via thrombolytic and neuroprotective actions. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202210144.

  14. Li, Q.; Liu, Y.; Zhang, Y. R.; Jiang, W. Immunogenicity-boosted cancer immunotherapy based on nanoscale metal-organic frameworks. J. Control. Release 2022, 347, 183–198.

    Article  CAS  PubMed  Google Scholar 

  15. Cui, W. T.; Yang, X.; Chen, X. Y.; Xiao, D. X.; Zhu, J. Y.; Zhang, M.; Qin, X.; Ma, X. H.; Lin, Y. F. Treating LRRK2-related Parkinson’s disease by inhibiting the mTOR signaling pathway to restore autophagy. Adv. Funct. Mater. 2021, 31, 2105152.

    Article  CAS  Google Scholar 

  16. Wang, Q. L.; Wang, X. Y.; Feng, Y. K. Chitosan hydrogel as tissue engineering scaffolds for vascular regeneration applications. Gels 2023, 9, 373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adak, A.; Das, G.; Barman, S.; Mohapatra, S.; Bhunia, D.; Jana, B.; Ghosh, S. Biodegradable neuro-compatible peptide hydrogel promotes neurite outgrowth, shows significant neuroprotection, and delivers anti-Alzheimer drug. ACS Appl. Mater. Interfaces 2017, 9, 5067–5076.

    Article  CAS  PubMed  Google Scholar 

  18. Ge, P. J.; Chang, S. H.; Wang, T.; Zhao, Q.; Wang, G.; He, B. An antioxidant and antibacterial polydopamine-modified thermo-sensitive hydrogel dressing for Staphylococcus aureus-infected wound healing. Nanoscale 2023, 15, 644–656.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, J.; Zhang, R. F.; Zhao, H. Q.; Qi, H. F.; Li, J. Y.; Li, J. F.; Zhou, X. Y.; Wang, A. Q.; Fan, K. L.; Yan, X. Y. et al. Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. Exploration 2022, 2, 20210267.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen, Z. Y.; Chen, P.; Zhu, Y. Y.; Qian, J. Y.; Huang, X. W.; Zhang, W.; Zhang, H.; Mo, Q.; Lu, Y. T.; Zhang, Y. J. 2D cobalt oxyhydroxide nanozymes inhibit inflammation by targeting the NLRP3 inflammasome. Adv. Funct. Mater. 2023, 33, 2214693.

    Article  CAS  Google Scholar 

  21. Wu, S.; Shi, Y.; Jiang, L. T.; Bu, W. Z.; Zhang, K.; Lin, W. Z.; Pan, C.; Xu, Z. B.; Du, J. W.; Chen, H. et al. N-Acetylcysteine-derived carbon dots for free radical scavenging in intervertebral disc degeneration. Adv. Healthcare Mater. 2023, 12, 2300533.

    Article  CAS  Google Scholar 

  22. Jiang, Y. X.; Rong, H. T.; Wang, Y. F.; Liu, S. E.; Xu, P.; Luo, Z.; Guo, L. M.; Zhu, T.; Rong, H. P.; Wang, D. S. et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res. 2023, 16, 9752–9759.

    Article  ADS  CAS  Google Scholar 

  23. Wang, Q.; Cheng, C. Q.; Zhao, S.; Liu, Q. Y.; Zhang, Y. H.; Liu, W. L.; Zhao, X. Z.; Zhang, H.; Pu, J.; Zhang, S. et al. A valence-engineered self-cascading antioxidant nanozyme for the therapy of inflammatory bowel disease. Angew. Chem., Int. Ed. 2022, 61, e202201101.

    Article  ADS  CAS  Google Scholar 

  24. Kelso, G. F.; Porteous, C. M.; Coulter, C. V.; Hughes, G.; Porteous, W. K.; Ledgerwood, E. C.; Smith, R. A. J.; Murphy, M. P. Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J. Biol. Chem. 2001, 276, 4588–4596.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support by the CAS Interdisciplinary Innovation Team (No. JCTD-2020-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Li, Wei Jiang or Kelong Fan.

Ethics declarations

The authors declare no conflict of interest.

Electronic Supplementary Material

12274_2023_6304_MOESM1_ESM.pdf

Bioinspired metal-organic framework nanozyme reinforced with thermosensitive hydrogel for regulating inflammatory responses in Parkinson’s disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Zhang, T., Ding, X. et al. Bioinspired metal-organic framework nanozyme reinforced with thermosensitive hydrogel for regulating inflammatory responses in Parkinson’s disease. Nano Res. 17, 858–865 (2024). https://doi.org/10.1007/s12274-023-6304-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6304-8

Keywords

Navigation