Skip to main content
Log in

Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oxidative stress and inflammation are central pathophysiological processes in a traumatic spinal cord injury (SCI). Antioxidant therapies that reduce the reactive oxygen and nitrogen species (RONS) overgeneration and inflammation are proved promising for improving the outcomes. However, efficient and long-lasting antioxidant therapy to eliminate multiple RONS with effective neuroprotection remains challenging. Here, a single-atom cobalt nanozyme (Co-SAzyme) with a hollow structure was reported to reduce the RONS and inflammation in the secondary injury of SCI. Among SAzymes featuring different single metal-N sites (e.g., Mn, Fe, Co, Ni, and Cu), this Co-SAzyme showed a versatile property to eliminate hydrogen peroxide (H2O2), superoxide anion (O ·−2 ), hydroxyl radical (·OH), nitric oxide (·NO), and peroxynitrite (ONOO) that overexpressed in the early stage of SCI. The porous hollow structure also allowed the encapsulation and sustained release of minocycline for neuroprotection in synergy. In vitro results showed that the Co-SAzyme reduced the apoptosis and pro-inflammatory cytokine levels of microglial cells under oxidative stress. In addition, the Co-SAzyme combined with minocycline achieved remarkable improved functional recovery and neural repairs in the SCI-rat model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, C. S.; Wilson, J. R.; Nori, S.; Kotter, M. R. N.; Druschel, C.; Curt, A.; Fehlings, M. G. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 2017, 3, 17018.

    Google Scholar 

  2. Fischer, I.; Dulin, J. N.; Lane, M. A. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat. Rev. Neurosci. 2020, 21, 366–383.

    CAS  Google Scholar 

  3. Jia, Z.; Zhu, H.; Li, J.; Wang, X.; Misra, H.; Li, Y. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 2012, 50, 264–274.

    CAS  Google Scholar 

  4. Coyoy-Salgado, A.; Segura-Uribe, J. J.; Guerra-Araiza, C.; Orozco-Suarez, S.; Salgado-Ceballos, H.; Feria-Romero, I. A.; Gallardo, J. M.; Orozco-Barrios, C. E. The importance of natural antioxidants in the treatment of spinal cord injury in animal models: An overview. Oxid. Med. Cell Longev. 2019, 2019, 3642491.

    Google Scholar 

  5. Hall, E. D. Antioxidant therapies for acute spinal cord injury. Neurotherapeutics 2011, 8, 152–167.

    CAS  Google Scholar 

  6. Kim, J. W.; Mahapatra, C.; Hong, J. Y.; Kim, M. S.; Leong, K. W.; Kim, H. W.; Hyun, J. K. Functional recovery of contused spinal cord in rat with the injection of optimal-dosed cerium oxide nanoparticles. Adv. Sci. 2017, 4, 1700034.

    Google Scholar 

  7. Hutson, T. H.; Di Giovanni, S. The translational landscape in spinal cord injury: Focus on neuroplasticity and regeneration. Nat. Rev. Neurol. 2019, 15, 732–745.

    Google Scholar 

  8. Andrabi, S. S.; Yang, J.; Gao, Y.; Kuang, Y. Z.; Labhasetwar, V. Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction. J. Control. Release 2020, 317, 300–311.

    CAS  Google Scholar 

  9. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    CAS  Google Scholar 

  10. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

    CAS  Google Scholar 

  11. Bains, M.; Hall, E. D. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 675–684.

    CAS  Google Scholar 

  12. Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 2021, 15, 2005–2037.

    CAS  Google Scholar 

  13. Xiang, H. J.; Feng, W.; Chen, Y. Single-atom catalysts in catalytic biomedicine. Adv. Mater. 2020, 32, 1905994.

    CAS  Google Scholar 

  14. Jiang, B.; Guo, Z. J.; Liang, M. M. Recent progress in single-atom nanozymes research. Nano Res. 2023, 16, 1878–1889.

    CAS  Google Scholar 

  15. Pei, J. H.; Zhao, R. L.; Mu, X. Y.; Wang, J. Y.; Liu, C. L.; Zhang, X. D. Single-atom nanozymes for biological applications. Biomater. Sci. 2020, 8, 6428–6441.

    CAS  Google Scholar 

  16. Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

    Google Scholar 

  17. Cao, S. J.; Zhao, Z. Y.; Zheng, Y. J.; Wu, Z. H.; Ma, T.; Zhu, B. H.; Yang, C. D.; Xiang, X.; Ma, L.; Han, X. L. et al. A library of ROS-catalytic metalloenzyme mimics with atomic metal centers. Adv. Mater. 2022, 34, 2200255.

    CAS  Google Scholar 

  18. Wu, W. W.; Huang, L.; Wang, E. K.; Dong, S. J. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 2020, 11, 9741–9756.

    CAS  Google Scholar 

  19. Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem., Int. Ed. 2020, 59, 2565–2576.

    CAS  Google Scholar 

  20. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    CAS  Google Scholar 

  21. Jin, X. Y.; Gao, F.; Qin, M. X.; Yu, Y. P.; Zhao, Y.; Shao, T. Y.; Chen, C.; Zhang, W. H.; Xie, B.; Xiong, Y. J. et al. How to make personal protective equipment spontaneously and continuously antimicrobial (incorporating oxidase-like catalysts). ACS Nano 2022, 16, 7755–7771.

    CAS  Google Scholar 

  22. Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

    CAS  Google Scholar 

  23. Zhang, S. F.; Li, Y. H.; Sun, S.; Liu, L.; Mu, X. Y.; Liu, S. H.; Jiao, M. L.; Chen, X. Z.; Chen, K.; Ma, H. Z. et al. Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nat. Commun. 2022, 13, 4744.

    CAS  Google Scholar 

  24. Cai, S. F.; Liu, J. M.; Ding, J. W.; Fu, Z.; Li, H. L.; Xiong, Y. L.; Lian, Z.; Yang, R.; Chen, C. Y. Tumor-microenvironment-responsive cascade reactions by a cobalt-single-atom nanozyme for synergistic nanocatalytic chemotherapy. Angew. Chem., Int. Ed. 2022, 61, e202204502.

    CAS  Google Scholar 

  25. Zhang, R. F.; Xue, B.; Tao, Y. H.; Zhao, H. Q.; Zhang, Z. X.; Wang, X. N.; Zhou, X. Y.; Jiang, B.; Yang, Z. L.; Yan, X. Y. et al. Edge-site engineering of defective Fe−N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv. Mater. 2022, 34, 2205324.

    CAS  Google Scholar 

  26. Xu, B. L.; Li, S. S.; Zheng, L. R.; Liu, Y. H.; Han, A. L.; Zhang, J.; Huang, Z. J.; Xie, H. J.; Fan, K. L.; Gao, L. Z. et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 2022, 34, 2107088.

    CAS  Google Scholar 

  27. Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

    CAS  Google Scholar 

  28. Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem., Int. Ed. 2021, 60, 12971–12979.

    CAS  Google Scholar 

  29. Cao, F. F.; Zhang, L.; You, Y. W.; Zheng, L. R.; Ren, J. S.; Qu, X. G. An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angew. Chem., Int. Ed. 2020, 59, 5108–5115.

    CAS  Google Scholar 

  30. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    CAS  Google Scholar 

  31. Zhu, X. Y.; Wu, J. B.; Liu, R. X.; Xiang, H. D.; Zhang, W. Q.; Chang, Q. C.; Wang, S. S.; Jiang, R.; Zhao, F.; Li, Q. Q. et al. Engineering single-atom iron nanozymes with radiation-enhanced self-cascade catalysis and self-supplied H2O2 for radio-enzymatic therapy. ACS Nano 2022, 16, 18849–18862.

    CAS  Google Scholar 

  32. Zhao, Y.; Yu, Y. P.; Gao, F.; Wang, Z. Y.; Chen, W. X.; Chen, C.; Yang, J.; Yao, Y. C.; Du, J. Y.; Zhao, C. et al. A highly accessible copper single-atom catalyst for wound antibacterial application. Nano Res. 2021, 14, 4808–4813.

    CAS  Google Scholar 

  33. Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.

    CAS  Google Scholar 

  34. Zhu, D. M.; Chen, H.; Huang, C. Y.; Li, G. X.; Wang, X.; Jiang, W.; Fan, K. L. H2O2 self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming “cold” tumors. Adv. Funct. Mater. 2022, 32, 2110268.

    CAS  Google Scholar 

  35. Qin, L. M.; Gan, J.; Niu, D. C.; Cao, Y. Q.; Duan, X. Z.; Qin, X.; Zhang, H.; Jiang, Z.; Jiang, Y. J.; Dai, S. et al. Interfacial-confined coordination to single-atom nanotherapeutics. Nat. Commun. 2022, 13, 91.

    Google Scholar 

  36. He, H.; Fei, Z. Y.; Guo, T. L.; Hou, Y.; Li, D.; Wang, K. F.; Ren, F. Z.; Fan, K. L.; Zhou, D. J.; Xie, C. M. et al. Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy. Biomaterials 2022, 280, 121272.

    CAS  Google Scholar 

  37. Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

    CAS  Google Scholar 

  38. Lazar, P.; Mach, R.; Otyepka, M. Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. J. Phys. Chem. C 2019, 123, 10695–10702.

    CAS  Google Scholar 

  39. Yang, H. B.; Miao, J. W.; Hung, S. F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122.

    Google Scholar 

  40. Yang, J.; Zhang, R. F.; Zhao, H. Q.; Qi, H. F.; Li, J. Y.; Li, J. F.; Zhou, X. Y.; Wang, A. Q.; Fan, K. L.; Yan, X. Y. et al. Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. Exploration 2022, 2, 20210267.

    Google Scholar 

  41. Wu, J. J. X.; Yu, Y. J.; Cheng, Y.; Cheng, C. Q.; Zhang, Y. H.; Jiang, B.; Zhao, X. Z.; Miao, L. Y.; Wei, H. Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal-organic framework nanozyme for therapy. Angew. Chem., Int. Ed. 2021, 60, 1227–1234.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 22175048, 22005027, and 51890892) and Tianjin Health Commission (No. ZC20175). We thank the assistance from 1W1B beamline at Beijing Synchrotron Radiation Facility in XAFS measurements and Analysis & Testing Center of Beijing Institute of Technology in TEM observations. The animal study protocol was approved by the Institutional Animal Care and Use Committee at the National Center for Nanoscience and Technology (NCNST).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Zhu, Jiatao Zhang, Yu Yi or Hao Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Rong, H., Wang, Y. et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res. 16, 9752–9759 (2023). https://doi.org/10.1007/s12274-023-5588-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5588-z

Keywords

Navigation