Skip to main content
Log in

Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Efficient, durable and economic electrocatalysts are crucial for commercializing water electrolysis technology. Herein, we report an advanced bifunctional electrocatalyst for alkaline water splitting by growing NiFe-layered double hydroxide (NiFe-LDH) nanosheet arrays on the conductive NiMo-based nanorods deposited on Ni foam to form a three-dimensional (3D) architecture, which exhibits exceptional performances for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In overall water splitting, only the low operation voltages of 1.45/1.61 V are required to reach the current density of 10/500 mA·cm−2, and the continuous water splitting at an industrial-level current density of 500 mA·cm−2 shows a negligible degradation (1.8%) of the cell voltage over 1000 h. The outstanding performance is ascribed to the synergism of the HER-active NiMo-based nanorods and the OER-active NiFe-LDH nanosheet arrays of the hybridized 3D architecture. Specifically, the dense NiFe-LDH nanosheet arrays enhance the local pH on cathode by retarding OH diffusion and enlarge the electrochemically active surface area on anode, while the conductive NiMo-based nanorods on Ni foam much decrease the charge-transfer resistances of both electrodes. This study provides an efficient strategy to explore advanced bifunctional electrocatalysts for overall water splitting by rationally hybridizing HER- and OER-active components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, H. Y.; Driess, M.; Menezes, P. W. Self- supported electrocatalysts for practical water electrolysis. Adv. Energy Mater. 2021, 11, 2102074.

    Article  CAS  Google Scholar 

  2. Li, X.; Zhao, L. L.; Yu, J. Y.; Liu, X. Y.; Zhang, X. L.; Liu, H.; Zhou, W. J. Water splitting: From electrode to green energy system. Nano-Micro Lett. 2020, 12, 131.

    Article  Google Scholar 

  3. Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.

    Article  CAS  Google Scholar 

  4. Xu, Q. C.; Zhang, J. H.; Zhang, H. X.; Zhang, L. Y.; Chen, L.; Hu, Y. J.; Jiang, H.; Li, C. Z. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ. Sci. 2021, 14, 5228–5259.

    Article  CAS  Google Scholar 

  5. Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. Angew. Chem., Int. Ed. 2014, 53, 12120–12124.

    Article  CAS  Google Scholar 

  6. Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, D.; Pu, Z. H.; Lu, R. H.; Ji, P. X.; Wang, P. Y.; Zhu, J. W.; Lin, C.; Li, H. W.; Zhou, X. G.; Hu, Z. Y. et al. Ultralow Ru loading transition metal phosphides as high - efficient bifunctional electrocatalyst for a solar - to - hydrogen generation system. Adv. Energy Mater. 2020, 10, 2000814.

    Article  CAS  Google Scholar 

  8. Gao, F.; Zhang, Y. P.; Wu, Z. Y.; You, H. M.; Du, Y. K. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coord. Chem. Rev. 2021, 436, 213825.

    Article  CAS  Google Scholar 

  9. Liu, J. W.; Yang, X. Q.; Si, F. Z.; Zhao, B.; Xi, X. A.; Wang, L.; Zhang, J. J.; Fu, X. Z.; Luo, J. L. Interfacial component coupling effects towards precise heterostructure design for efficient electrocatalytic water splitting. Nano Energy 2022, 103, 107753.

    Article  CAS  Google Scholar 

  10. Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

    Article  CAS  Google Scholar 

  11. Zhao, Y.; Wei, S. Z.; Pan, K. M.; Dong, Z. L.; Zhang, B.; Wu, H. H.; Zhang, Q. B.; Lin, J. P.; Pang, H. Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chem. Eng. J. 2021, 421, 129645.

    Article  CAS  Google Scholar 

  12. Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3-xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334

    Article  CAS  Google Scholar 

  13. Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe,Ni)S2 core-shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

    Article  CAS  Google Scholar 

  14. Xu, S. R.; Yu, X.; Luo, L.; Li, W. J.; Du, Y. S.; Kong, Q. Q.; Wu, Q. Multiscale manipulating induced flexible heterogeneous V- NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction. Nano Res. 2022, 15, 4942–4949.

    Article  CAS  Google Scholar 

  15. Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.

    Article  Google Scholar 

  16. Yu, M. Q.; Budiyanto, E.; Tüysüz, H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202103824.

    Article  CAS  Google Scholar 

  17. Chandrasekaran, S.; Khandelwal, M.; Dayong, F.; Sui, L.; Chung, J. S.; Misra, R. D. K.; Yin, P.; Kim, E. J.; Kim, W.; Vanchiappan, A. et al. Developments and perspectives on robust nano - and microstructured binder - free electrodes for bifunctional water electrolysis and beyond. Adv. Energy Mater. 2022, 12, 2200409.

    Article  CAS  Google Scholar 

  18. Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839–4847.

    Article  CAS  Google Scholar 

  19. Li, W. J.; Deng, Y. Q.; Luo, L.; Du, Y. S.; Cheng, X. H.; Wu, Q. Nitrogen-doped Fe2O3/NiTe2 as an excellent bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2023, 639, 416–423.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ito, Y.; Ohto, T.; Hojo, D.; Wakisaka, M.; Nagata, Y.; Chen, L. H.; Hu, K. L.; Izumi, M.; Fujita, J. I.; Adschiri, T. Cooperation between holey graphene and NiMo alloy for hydrogen evolution in an acidic electrolyte. ACS Catal. 2018, 8, 3579–3586.

    Article  CAS  Google Scholar 

  22. Jiang, P.; Yang, Y.; Shi, R. H.; Xia, G. L.; Chen, J. T.; Su, J. W.; Chen, Q. W. Pt- like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 5475–5485.

    Article  CAS  Google Scholar 

  23. Zhou, D. J.; Li, P. S.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W. F.; Sun, X. M.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817.

    Article  CAS  PubMed  Google Scholar 

  24. Zhai, P. L.; Wang, C.; Zhao, Y. Y.; Zhang, Y. X.; Gao, J. F.; Sun, L. C.; Hou, J. G. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Commun. 2023, 14, 1873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shin, H.; Xiao, H.; Goddard III, W. A. In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni1ࢤ;xFexOOH) catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 6745–6748.

    Article  CAS  PubMed  Google Scholar 

  26. Xiang, Q.; Wang, J.; Miao, Q.; Tao, P.; Song, C.; Shang, W.; Deng, T.; Yin, Z.; Wu, J. Recent progress in self-supported nanoarrays with diverse substrates for water splitting and beyond. Mater. Today Nano 2021, 15, 100120.

    Article  CAS  Google Scholar 

  27. Huang, C.; Chu, P. K. Recommended practices and benchmarking of foam electrodes in water splitting. Trends Chem. 2022, 4, 1065–1077.

    Article  CAS  Google Scholar 

  28. Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827.

    Article  CAS  Google Scholar 

  29. Meng, X.; Li, Z. Q.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Huang, B. B.; Cheng, H. F.; He, J. H. Enabling unassisted solar water splitting with concurrent high efficiency and stability by robust earth-abundant bifunctional electrocatalysts. Nano Energy 2023, 109, 108296.

    Article  CAS  Google Scholar 

  30. Qian, G. F.; Chen, J. L.; Yu, T. Q.; Liu, J. C.; Luo, L.; Yin, S. B. Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 2021, 14, 20.

    Article  Google Scholar 

  31. Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self- templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

    Article  Google Scholar 

  32. Lv, J. J.; Wang, L. M.; Li, R. S.; Zhang, K. Y.; Zhao, D. F.; Li, Y. Q.; Li, X. J.; Huang, X. B.; Wang, G. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline-amorphous NiFe-LDH for oxygen evolution reaction. ACS Catal. 2021, 11, 14338–14351.

    Article  CAS  Google Scholar 

  33. Wang, B. R.; Jiao, S. H.; Wang, Z. S.; Lu, M. J.; Chen, D.; Kang, Y. T.; Pang, G. S.; Feng, S. H. Rational design of NiFe LDH@Ni3N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2020, 8, 17202–17211.

    Article  CAS  Google Scholar 

  34. Feng, X. T.; Jiao, Q. Z.; Chen, W. X.; Dang, Y. L.; Dai, Z.; Suib, S. L.; Zhang, J. T.; Zhao, Y.; Li, H. S.; Feng, C. H. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B: Environ. 2021, 286, 119869.

    Article  CAS  Google Scholar 

  35. Luo, M.; Yang, J. T.; Li, X. G.; Eguchi, M.; Yamauchi, Y.; Wang, Z. L. Insights into alloy/oxide or hydroxide interfaces in Ni-Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem. Sci. 2023, 14, 3400–3414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, X. Y.; Cai, M. M.; Zou, Z. H.; Huang, J. F.; Xu, C. L. A novel MoNi@Ni(OH)2 heterostructure with Pt-like and stable electrocatalytic activity for the hydrogen evolution reaction. Chem. Commun. 2020, 56, 1729–1732.

    Article  CAS  Google Scholar 

  37. Faid, A. Y.; Barnett, A. O.; Seland, F.; Sunde, S. Tuning Ni-MoO2 catalyst-ionomer and electrolyte interaction for water electrolyzers with anion exchange membranes. ACS Appl. Energy Mater. 2021, 4, 3327–3340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qin, F.; Zhao, Z. H.; Alam, M. K.; Ni, Y. Z.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z. F.; Wang, Z. M.; Bao, J. M. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 546–554.

    Article  CAS  Google Scholar 

  40. Li, A.; Zhang, L.; Wang, F. Z.; Zhang, L.; Li, L.; Chen, H. M.; Wei, Z. D. Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting. Appl. Catal. B: Environ. 2022, 310, 121353.

    Article  CAS  Google Scholar 

  41. Zhang, B.; Yang, F.; Liu, X. D.; Wu, N.; Che, S.; Li, Y. F. Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting. Appl. Catal. B: Environ. 2021, 298, 120494.

    Article  CAS  Google Scholar 

  42. Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Sun, L. C.; Hou, J. G. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi, W. J.; Zhu, J. W.; Gong, L.; Feng, D.; Ma, Q. L.; Yu, J.; Tang, H. L.; Zhao, Y. F.; Mu, S. C. Fe- incorporated Ni/MoO2 hollow heterostructure nanorod arrays for high-efficiency overall water splitting in alkaline and seawater media. Small 2022, 18, 2205683.

    Article  CAS  Google Scholar 

  44. Hu, F.; Yu, D. S.; Ye, M.; Wang, H.; Hao, Y. N.; Wang, L. Q.; Li, L. L.; Han, X. P.; Peng, S. J. Lattice - matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe-O-Cu bridges. Adv. Energy Mater. 2022, 12, 2200067.

    Article  CAS  Google Scholar 

  45. Luo, W. H.; Wang, Y.; Luo, L. X.; Gong, S.; Wei, M. N.; Li, Y. X.; Gan, X. P.; Zhao, Y. Y.; Zhu, Z. H.; Li, Z. Single- atom and bimetallic nanoalloy supported on nanotubes as a bifunctional electrocatalyst for ultrahigh-current-density overall water splitting. ACS Catal. 2022, 12, 1167–1179.

    Article  CAS  Google Scholar 

  46. Li, Y. K.; Zhang, G.; Lu, W. T.; Cao, F. F. Amorphous Ni-Fe-Mo suboxides coupled with ni network as porous nanoplate array on nickel foam: A highly efficient and durable bifunctional electrode for overall water splitting. Adv. Sci. 2020, 7, 1902034.

    Article  CAS  Google Scholar 

  47. Ma, H. B.; Chen, Z. W.; Wang, Z. L.; Singh, C. V.; Jiang, Q. Interface engineering of Co/CoMoN/NF heterostructures for high-performance electrochemical overall water splitting. Adv. Sci. 2022, 9, 2105313.

    Article  CAS  Google Scholar 

  48. Zhang, Z. H.; Liu, X. H.; Wang, D.; Wan, H.; Zhang, Y.; Chen, G.; Zhang, N.; Ma, R. Z. Ruthenium composited NiCo2O4 spinel nanocones with oxygen vacancies as a high-efficient bifunctional catalyst for overall water splitting. Chem. Eng. J. 2022, 446, 137037.

    Article  CAS  Google Scholar 

  49. Chen, Y. K.; Wang, Y. J.; Yu, J. Y.; Xiong, G. W.; Niu, H. S.; Li, Y.; Sun, D. H.; Zhang, X. L.; Liu, H.; Zhou, W. J. Underfocus laser induced Ni nanoparticles embedded metallic MoN microrods as patterned electrode for efficient overall water splitting. Adv. Sci. 2022, 9, 2105869.

    Article  CAS  Google Scholar 

  50. Su, H.; Jiang, J.; Li, N.; Gao, Y. Q.; Ge, L. NiCu alloys anchored defect-rich NiFe layered double-hydroxides as efficient electrocatalysts for overall water splitting. Chem. Eng. J. 2022, 446, 137226.

    Article  CAS  Google Scholar 

  51. Hu, Y.; Luo, Z. Y.; Guo, M.; Dong, J. X.; Yan, P. X.; Hu, C.; Isimjan, T. T.; Yang, X. L. Interface engineering of Co2N0.67/CoMoO4 heterostructure nanosheets as a highly active electrocatalyst for overall water splitting and Zn-H2O cell. Chem. Eng. J. 2022, 435, 134795.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Key Research and Development Program of China (No. 2021YFA1500900), the National Natural Science Foundation of China (Nos. 52071174, 21832003, and 21972061), the Natural Science Foundation of Jiangsu Province, Major Project (No. BK20212005), and the Foundation of Science and Technology of Suzhou (No. SYC2022102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Wu or Zheng Hu.

Electronic Supplementary Material

12274_2023_6303_MOESM1_ESM.pdf

Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Feng, B., Yan, M. et al. Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities. Nano Res. 17, 3769–3776 (2024). https://doi.org/10.1007/s12274-023-6303-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6303-9

Keywords

Navigation