Skip to main content
Log in

Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Water electrolysis is severely impeded by the kinetically sluggish oxygen evolution reaction (OER) due to its inherent multistep four-electron transfer mechanism. However, designing advanced OER electrocatalysts with abundant active sites, robust stability, and low cost remains a huge challenge. Herein, a facile and versatile multiscale manipulating strategy was proposed to construct a novel V-NiFe2O4@Ni2P heterostructure self-supported on Ni foam (V-NiFe2O4@Ni2P/NF). In such unique architecture, the intrinsic OER catalytic activity was greatly boosted by the in-situ generated heterogeneous Ni2P phase induced by precisely selective phosphorylation of the NiFe-precursor, while the synchronous metal V doping stimulated the activity via modulating the electronic configuration, thus synergistically promoting its OER kinetics. In addition, the binder-free catalyst built from three-dimensional (3D) nanosheet arrays (NSs) can offer a large active surface for efficient charge/mass transfer and a robust scaffold for the integrated structure. The as-prepared flexible electrode exhibited superior OER activity with an ultra-low overpotential of 230 mV at 50 mA·cm−2 and outstanding long-term stability for 40 h. This discovery is expected to provide an opportunity to explore efficient and stable commercial materials for scalable, efficient, and robust electrochemical hydrogen (H2) production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, C.; Qiu, Y. R.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z. Y.; Kim, J. Y.; Cullen, D. A.; Zheng, D. X. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 2021, 13, 887–894.

    Article  CAS  Google Scholar 

  2. Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.

    Article  CAS  Google Scholar 

  3. Zhang, L. C.; Zhao, H. T.; Xu, S. R.; Liu, Q.; Li, T. S.; Luo, Y. L.; Gao, S. Y.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000048.

    Article  CAS  Google Scholar 

  4. Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

    Article  CAS  Google Scholar 

  5. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3794-0.

  6. Guo, W. H.; Zhang, Q.; Wang, X. H.; Yang, Y. X.; Li, X. L.; Li, L. J.; Luo, H. Q.; Li, N. B. MOF-derived V-CoxP@NC nanoarchitectures for highly enhanced electrocatalytic water splitting through electronical tuning. Electrochim. Acta 2020, 357, 136850.

    Article  CAS  Google Scholar 

  7. Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and Interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

    Article  CAS  Google Scholar 

  8. Ye, C.; Zhang, L. C.; Yue, L. C.; Deng, B.; Cao, Y.; Liu, Q.; Luo, Y. L.; Lu, S. Y.; Zheng, B. Z.; Sun, X. P. A NiCo LDH nanosheet array on graphite felt: An efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 2021, 8, 3162–3166.

    Article  CAS  Google Scholar 

  9. Ding, P.; Meng, C. Q.; Liang, J.; Li, T. S.; Wang, Y.; Liu, Q.; Luo, Y. L.; Cui, G. W.; Asiri, A. M.; Lu, S. Y. et al. NiFe layered-double-hydroxide nanosheet arrays on graphite felt: A 3D electrocatalyst for highly efficient water oxidation in alkaline media. Inorg. Chem. 2021, 60, 12703–12708.

    Article  CAS  Google Scholar 

  10. Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    Article  CAS  Google Scholar 

  11. Li, C. Y.; Liu, M. D.; Ding, H. Y.; He, L. Q.; Wang, E. Z.; Wang, B. L.; Fan, S. S.; Liu, K. A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 17527–17536.

    Article  CAS  Google Scholar 

  12. Wang, D.; Chang, Y. X.; Li, Y. R.; Zhang, S. L.; Xu, S. L. Well-dispersed NiCoS2 nanoparticles/rGO composite with a large specific surface area as an oxygen evolution reaction electrocatalyst. Rare Met. 2021, 40, 3156–3165.

    Article  CAS  Google Scholar 

  13. Guan, H. M.; Li, W. T.; Han, J.; Yi, W. C.; Bai, H.; Kong, Q. H.; Xi, G. C. General molten-salt route to three-dimensional porous transition metal nitrides as sensitive and stable Raman substrates. Nat. Commun. 2021, 12, 1376.

    Article  CAS  Google Scholar 

  14. Liu, C. C.; Gong, T.; Zhang, J.; Zheng, X. R.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Y. Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B:Environ. 2020, 262, 118245.

    Article  CAS  Google Scholar 

  15. Yu, X.; Xu, S. R.; Wang, Z.; Wang, S.; Zhang, J.; Liu, Q.; Luo, Y. L.; Du, Y. S.; Sun, X. P.; Wu, Q. Self-supported Ni3S2@Ni2P/MoS2 heterostructures on nickel foam for an outstanding oxygen evolution reaction and efficient overall water splitting. Dalton Trans. 2021, 50, 15094–15102.

    Article  CAS  Google Scholar 

  16. Qiao, Y. Y.; Yuan, P. F.; Pao, C. W.; Cheng, Y.; Pu, Z. H.; Xu, Q.; Mu, S. C.; Zhang, J. N. Boron-rich environment boosting ruthenium boride on B, N doped carbon outperforms platinum for hydrogen evolution reaction in a universal pH range. Nano Energy 2020, 75, 104881.

    Article  CAS  Google Scholar 

  17. Pan, S. C.; Yu, J.; Zhang, Y. X.; Li, B. Pulsed laser deposited Cr-doped CoFe2O4 thin film as highly efficient oxygen evolution reaction electrode. Mater. Lett. 2020, 262, 127027.

    Article  CAS  Google Scholar 

  18. Duan, J. J.; Zhang, R. L.; Feng, J. J.; Zhang, L.; Zhang, Q. L.; Wang, A. J. Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2021, 581, 774–782.

    Article  CAS  Google Scholar 

  19. Chen, X. K.; Zhang, X. H.; Zhuang, L. Z.; Zhang, W.; Zhang, N. C.; Liu, H. W.; Zhan, T. R.; Zhang, X. L.; She, X. L.; Yang, D. J. Multiple vacancies on (111) facets of single-crystal NiFe2O4 spinel boost electrocatalytic oxygen evolution reaction. Chem. - Asian J. 2020, 15, 3995–3999.

    Article  CAS  Google Scholar 

  20. Chu, D. W.; Li, F. B.; Song, X. M.; Ma, H. Y.; Tan, L. C.; Pang, H. J.; Wang, X. M.; Guo, D. X.; Xiao, B. X. A novel dual-tasking hollow cube NiFe2O4-NiCo-LDH@rGO hierarchical material for high preformance supercapacitor and glucose sensor. J. Colloid Interface Sci. 2020, 568, 130–138.

    Article  CAS  Google Scholar 

  21. Fu, Z. Q.; Liu, S. L.; Mai, Z.; Tang, Z. H.; Qin, D. D.; Tian, Y.; Wang, X. F. Heterostructure and oxygen vacancies promote NiFe2O4/Ni3S4 toward oxygen evolution reaction and Zn-Air batteries. Chem. - Asian J. 2020, 15, 3568–3574.

    Article  CAS  Google Scholar 

  22. Xu, S. R.; Du, Y. S.; Yu, X.; Wang, Z.; Cheng, X. H.; Liu, Q.; Luo, Y. L.; Sun, X. P.; Wu, Q. A Cr-FeOOH@Ni-P/NF binder-free electrode as an excellent oxygen evolution reaction electrocatalyst. Nanoscale 2021, 13, 17003–17010.

    Article  CAS  Google Scholar 

  23. Zhao, T. W.; Shen, X. J.; Wang, Y.; Hocking, R. K.; Li, Y. B.; Rong, C. L.; Dastafkan, K.; Su, Z.; Zhao, C. In situ reconstruction of V-Doped Ni2P Pre-catalysts with tunable electronic structures for water oxidation. Adv. Funct. Mater. 2021, 31, 2100614.

    Article  CAS  Google Scholar 

  24. Xiong, L. F.; Wang, B.; Cai, H. R.; Hao, H. J.; Li, J.; Yang, T.; Yang, S. C. Understanding the doping effect on hydrogen evolution activity of transition-metal phosphides: Modeled with Ni2P. Appl. Catal. B:Environ. 2021, 295, 120283.

    Article  CAS  Google Scholar 

  25. Zhang, J. N.; Wang, K. X.; Xu, Q.; Zhou, C. Y.; Cheng, F. Y.; and Guo, S. J. Beyond yolkshell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 2015, 9, 3369–3376.

    Article  CAS  Google Scholar 

  26. Li, X.; Huang, W. Q.; Xia, L. X.; Li, Y. Y.; Zhang, H. W.; Ma, S. F.; Wang, Y. M.; Wang, X. J.; Huang, G. F. NiFe2O4/NiFeP heterostructure grown on nickel foam as an efficient electrocatalyst for water oxidation. ChemElectroChem 2020, 7, 4047–4054.

    Article  CAS  Google Scholar 

  27. Choi, J.; Kim, D.; Zheng, W. R.; Yan, B. Y.; Li, Y.; Lee, L. Y. S.; Piao, Y. Z. Interface engineered NiFe2O4−x/NiMoO4 nanowire arrays for electrochemical oxygen evolution. Appl. Catal. B:Environ. 2021, 286, 119857.

    Article  CAS  Google Scholar 

  28. Bao, W. W.; Xiao, L.; Zhang, J. J.; Deng, Z. F.; Yang, C. M.; Ai, T. T.; Wei, X. L. Interface engineering of NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions. Chem. Commun. 2020, 56, 9360–9363.

    Article  CAS  Google Scholar 

  29. Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, G. H.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Fan, Z. Z. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.

    Article  CAS  Google Scholar 

  30. Chen, J.; Qi, X. P.; Liu, C.; Zeng, J. M.; Liang, T. X. Interfacial engineering of a MoO2-CeF3 heterostructure as a high-performance hydrogen evolution reaction catalyst in both alkaline and acidic solutions. ACS Appl. Mater. Interfaces 2020, 12, 51418–51427.

    Article  CAS  Google Scholar 

  31. Kashale, A. A.; Yi, C. H.; Cheng, K. Y.; Guo, J. S.; Pan, Y. H.; Chen, I. W. P. Binder-free heterostructured NiFe2O4/NiFe LDH nanosheet composite electrocatalysts for oxygen evolution reactions. ACS Appl. Energy Mater. 2020, 3, 10831–10840.

    Article  CAS  Google Scholar 

  32. Rao, Y.; Wang, S. W.; Zhang, R. Y.; Jiang, S. H.; Chen, S.; Yu, Y. N.; Bao, S. J.; Xu, M. W.; Yue, Q.; Xin, H. L. et al. Nanoporous V-Doped Ni5P4 microsphere: A highly efficient electrocatalyst for hydrogen evolution reaction at all pH. ACS Appl. Mater. Interfaces 2020, 12, 37092–37099.

    Article  CAS  Google Scholar 

  33. Suo, N.; Chen, C.; Han, X. Q.; He, X. Q.; Dou, Z. Y.; Lin, Z. H.; Cui, L. L.; Xiang, J. B. The construction of hydrangea-like vanadium-doped iron nickel phosphide as an enhanced bifunctional electrocatalyst for overall water splitting. ACS Appl. Energy Mater. 2020, 3, 9449–9458.

    Article  CAS  Google Scholar 

  34. Roh, H.; Jung, H.; Choi, H.; Han, J. W.; Park, T.; Kim, S.; Yong, K. Various metal (Fe, Mo, V, Co)-doped Ni2P nanowire arrays as overall water splitting electrocatalysts and their applications in unassisted solar hydrogen production with STH 14%. Appl. Catal. B:Environ. 2021, 297, 120434.

    Article  CAS  Google Scholar 

  35. Xu, S. R.; Zhao, H. T.; Li, T. S.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Asiri, A. M.; Wu, Q.; Sun, X. P. Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: Recent advances and future prospects. J. Mater. Chem. A 2020, 8, 19729–19745.

    Article  CAS  Google Scholar 

  36. Xu, S. R.; Du, Y. S.; Liu, X.; Yu, X.; Teng, C. L.; Cheng, X. H.; Chen, Y. F.; Wu, Q. Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P-Ni5P4/NF catalyst for efficient oxygen evolution. J. Alloys Compd. 2020, 826, 154210.

    Article  CAS  Google Scholar 

  37. Xie, Q. X.; Zhou, D. J.; Li, P. S.; Cai, Z.; Xie, T. H.; Gao, T. F.; Chen, R. D.; Kuang, Y.; Sun, X. M. Enhancing oxygen evolution reaction by cationic surfactants. Nano Res. 2019, 12, 2302–2306.

    Article  CAS  Google Scholar 

  38. de Wijs, G. A.; Kresse, G.; Vocadlo, L.; Dobson, D.; Alfè, D.; Gillan, M. J.; Price, G. D. The viscosity of liquid iron at the physical conditions of the Earth’s core. Nature 1998, 392, 805–807.

    Article  CAS  Google Scholar 

  39. Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys.: Condens. Matter 1994, 6, 8245–8257.

    CAS  Google Scholar 

  40. Alfè, D.; Gillan, M. J.; Price, G. D. The melting curve of iron at the pressures of the Earth’s core from ab initio calculations. Nature 1999, 401, 462–464.

    Article  Google Scholar 

  41. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  42. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  43. Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

    Article  CAS  Google Scholar 

  44. Qin, J. F.; Lin, J. H.; Chen, T. S.; Liu, D. P.; Xie, J. Y.; Guo, B. Y.; Wang, L.; Chai, Y. M.; Dong, B. Facile synthesis of V-doped CoP nanoparticles as bifunctional electrocatalyst for efficient water splitting. J. Energy Chem. 2019, 39, 182–187.

    Article  Google Scholar 

  45. Liao, C. A.; Xiao, Z. Y.; Zhang, N.; Liang, B.; Chen, G.; Wu, W.; Pan, J. L.; Liu, M.; Zheng, X. R.; Kang, Q. et al. Photo-irradiation tunes highly active sites over β-Ni(OH)2 nanosheets for the electrocatalytic oxygen evolution reaction. Chem. Commun. 2021, 57, 9060–9063.

    Article  CAS  Google Scholar 

  46. Yu, X. Y.; Feng, Y.; Guan, B. Y.; Lou, X. W.; Paik, U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ. Sci. 0016, 9, 1246–1250.

    Article  CAS  Google Scholar 

  47. Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 0 0, 32, 1806326.

  48. Luan, X. Q.; Du, H. T.; Kong, Y.; Qu, F. L.; Lu, L. M. A novel FeS-NiS hybrid nanoarray: An efficient and durable electrocatalyst for alkaline water oxidation. Chem. Commun. 2019, 55, 7335–7338.

    Article  CAS  Google Scholar 

  49. Lim, D.; Kong, H.; Kim, N.; Lim, C.; Ahn, W. S.; Baeck, S. H. Oxygen-deficient NiFe2O4 spinel nanoparticles as an enhanced electrocatalyst for the oxygen evolution reaction. ChemNanoMat 2019, 5, 1296–1302.

    Article  CAS  Google Scholar 

  50. Yu, X.; Xu, S. R.; Wang, Z.; Cheng, X. H.; Du, Y. S.; Chen, G.; Sun, X. P.; Wu, Q. An Mn-doped NiCoP flower-like structure as a highly efficient electrocatalyst for hydrogen evolution reaction in acidic and alkaline solutions with long duration. Nanoscale 2021, 13, 11069–11076.

    Article  CAS  Google Scholar 

  51. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  CAS  Google Scholar 

  52. Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241.

    Article  CAS  Google Scholar 

  53. He, X. B.; Zhao, X. R.; Yin, F. X.; Chen, B. H.; Li, G. R.; Yin, H. Q. NiS-FeS/N, S co-doped carbon hybrid: Synergistic effect between NiS and FeS facilitating electrochemical oxygen evolution reaction. Int. J. Energy Res. 2020, 44, 7057–7067.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Hubei Province, China (Nos. 2019CFB569 and 2020CFB430), the Science and Technology Foundation for Creative Research Group of Hubei Normal University, China (No. 2019CZ08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wu.

Electronic Supplementary Material

12274_2021_4024_MOESM1_ESM.pdf

Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Yu, X., Luo, L. et al. Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction. Nano Res. 15, 4942–4949 (2022). https://doi.org/10.1007/s12274-021-4024-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4024-5

Keywords

Navigation