Skip to main content
Log in

Low-coordination environment design of single Co atoms for efficient CO2 photoreduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalytic carbon dioxide (CO2) to carbon monoxide (CO) offers a promising way for both alleviating the greenhouse effect and meeting the industrial demand. Herein, we constructed a Co single-atom catalyst with intentional low-coordination environment design on porous ZnO (denoted as Co1/ZnO). Impressively, Co1/ZnO exhibited a remarkable activity with a CO yield rate of 22.25 mmol·g−1·h−1 and a selectivity of 80.2% for CO2 photoreduction reactions under visible light. The incorporation of single Co atoms provided an additional photo-generated electron transfer channel, which suppressed the carrier recombination of photocatalysts. Moreover, the unsaturated Co active sites were capable to adsorb CO2 molecule spontaneously, thus facilitating the activation of CO2 molecule during CO2 reduction course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

    Article  Google Scholar 

  2. Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges. Angew. Chem., Int. Ed. 2018, 57, 7610–7627.

    Article  CAS  Google Scholar 

  3. Yang, P. J.; Zhuzhang, H. Y.; Wang, R. R.; Lin, W.; Wang, X. C. Carbon vacancies in a melon polymeric matrix promote photocatalytic carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 1134–1137.

    Article  CAS  Google Scholar 

  4. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    Article  CAS  Google Scholar 

  5. Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-6037-8.

  6. Shen, J.; Wang, D. S. How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 2024, 3, e9120096.

    Article  Google Scholar 

  7. Xiang, Y. Z.; Kruse, N. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins. Nat. Commun. 2016, 7, 13058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ai, H. J.; Zhao, F. Q.; Geng, H. Q.; Wu, X. F. Palladium-catalyzed thiocarbonylation of alkenes toward linear thioesters. ACS Catal. 2021, 11, 3614–3619.

    Article  CAS  Google Scholar 

  9. Peng, J. B.; Geng, H. Q.; Wu, X. F. The chemistry of CO: Carbonylation. Chem 2019, 5, 526–552.

    Article  CAS  Google Scholar 

  10. Jahangiri, H.; Bennett, J.; Mahjoubi, P.; Wilson, K.; Gu, S. A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 2014, 4, 2210–2229.

    Article  CAS  Google Scholar 

  11. Yang, H. L.; Zhang, D. D.; Luo, Y.; Yang, W. X.; Zhan, X. Q.; Yang, W. Y.; Hou, H. L. Highly efficient and selective visible-light driven photoreduction of CO2 to CO by metal–organic frameworks-derived Ni-Co-O porous microrods. Small 2022, 18, 2202939.

    Article  CAS  Google Scholar 

  12. Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Y. H.; Wang, K.; Guo, T.; Li, J.; Wu, X. Y.; Zhang, G. K. Construction of 2D/2D Bi2Se3/g-C3N4 nanocomposite with high interfacial charge separation and photo-heat conversion efficiency for selective photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2020, 277, 119232.

    Article  CAS  Google Scholar 

  14. Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

    Article  CAS  PubMed  Google Scholar 

  15. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-5700-4.

  16. Li, M. H.; Zhang, C. C.; Tang, Y.; Chen, Q. L.; Li, W.; Han, Z.; Chen, S. Y.; Lv, C. C.; Yan, Y. J.; Zhang, Y. et al. Environment molecules boost the chemoselective hydrogenation of nitroarenes on cobalt single-atom catalysts. ACS Catal. 2022, 12, 11960–11973.

    Article  CAS  Google Scholar 

  17. Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem. 2021, 133, 23806–23810.

    Article  Google Scholar 

  18. Song, Z. X.; Zhang, L.; Doyle-Davis, K.; Fu, X. Z.; Luo, J. L.; Sun, X. L. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv. Energy Mater. 2020, 10, 2001561.

    Article  CAS  Google Scholar 

  19. Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From Nano- to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

    Article  CAS  Google Scholar 

  20. Tan, H. Y.; Wang, J. L.; Lin, S. C.; Kuo, T. R.; Chen, H. M. Dynamic coordination structure evolutions of atomically dispersed metal catalysts for electrocatalytic reactions. Adv. Mater. Interfaces 2023, 10, 2202050.

    Article  CAS  Google Scholar 

  21. Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

    Article  CAS  Google Scholar 

  22. Shan, J. Q.; Ye, C.; Jiang, Y. L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Metal–metal interactions in correlated single-atom catalysts. Sci. Adv. 2022, 8, eabo0762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202308653.

  24. Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

    Article  CAS  Google Scholar 

  25. Ding, R.; Chen, Y. W.; Li, X. K.; Rui, Z. Y.; Hua, K.; Wu, Y. K.; Duan, X.; Wang, X. B.; Li, J.; Liu, J. G. Atomically dispersed, low-coordinate Co–N sites on carbon nanotubes as inexpensive and efficient electrocatalysts for hydrogen evolution. Small 2022, 18, 2105335.

    Article  CAS  Google Scholar 

  26. Jiang, M. P.; Huang, K. K.; Liu, J. H.; Wang, D.; Wang, Y.; Wang, X.; Li, Z. D.; Wang, X. Y.; Geng, Z. B.; Hou, X. Y. et al. Magnetic-field-regulated TiO2 {100} facets: A strategy for C–C coupling in CO2 photocatalytic conversion. Chem 2020, 6, 2335–2346.

    Article  CAS  Google Scholar 

  27. Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J. et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.

    Article  CAS  Google Scholar 

  28. Zheng, K.; Wu, Y.; Zhu, J. C.; Wu, M. Y.; Jiao, X. C.; Li, L.; Wang, S. M.; Fan, M. H.; Hu, J.; Yan, W. S. et al. Room-temperature photooxidation of CH4 to CH3OH with nearly 100% selectivity over hetero-ZnO/Fe2O3 porous nanosheets. J. Am. Chem. Soc. 2022, 144, 12357–12366.

    Article  CAS  PubMed  Google Scholar 

  29. Hu, C. L.; Zhang, L.; Zhao, Z. J.; Luo, J.; Shi, J.; Huang, Z. Q.; Gong, J. L. Edge sites with unsaturated coordination on core-shell Mn3O4@MnxCo3−xO4 nanostructures for electrocatalytic Water Oxidation. Adv. Mater. 2017, 29, 1701820.

    Article  Google Scholar 

  30. Li, Y. H.; Kidkhunthod, P.; Zhou, Y. T.; Wang, X.; Lee, J. M. Dense heterointerfaces and unsaturated coordination synergistically accelerate electrocatalysis in Pt/Pt5P2 porous nanocages. Adv. Funct. Mater. 2022, 32, 2205985.

    Article  CAS  Google Scholar 

  31. Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.

    Article  CAS  Google Scholar 

  32. Wang, S. B.; Guan, B. Y.; Lou, X. W. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy Environ. Sci. 2018, 11, 306–310.

    Article  CAS  Google Scholar 

  33. Zhong, H.; Sa, R. J.; Lv, H. W.; Yang, S. L.; Yuan, D. Q.; Wang, X. C.; Wang, R. H. Covalent organic framework hosting metalloporphyrin-based carbon dots for visible-light-driven selective CO2 reduction. Adv. Funct. Mater. 2020, 30, 2002654.

    Article  CAS  Google Scholar 

  34. Gao, C.; Meng, Q. Q.; Zhao, K.; Yin, H. J.; Wang, D. W.; Guo, J.; Zhao, S. L.; Chang, L.; He, M.; Li, Q. X. et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv. Mater. 2016, 28, 6485–6490.

    Article  CAS  PubMed  Google Scholar 

  35. Geng, Z. G.; Kong, X. D.; Chen, W. W.; Su, H. Y.; Liu, Y.; Cai, F.; Wang, G. X.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem., Int. Ed. 2018, 57, 6054–6059.

    Article  CAS  Google Scholar 

  36. Wang, Y. F.; Zheng, Z.; Wang, J. Q.; Liu, X. Y.; Ren, J. Z.; An, C. B.; Zhang, S. Q.; Hou, J. H. New method for preparing ZnO layer for efficient and stable organic solar cells. Adv. Mater. 2023, 35, 2208305.

    Article  CAS  Google Scholar 

  37. Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem. 2020, 132, 6283–6288.

    Article  Google Scholar 

  38. Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

    Article  CAS  Google Scholar 

  40. Hirsch, O.; Kvashnina, K. O.; Luo, L.; Süess, M. J.; Glatzel, P.; Koziej, D. High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO2. Proc. Natl. Acad. Sci. USA 2015, 112, 15803–15808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu, S. W.; Tobin, J. G.; Crowhurst, J. C.; Sharma, S.; Dewhurst, J. K.; Olalde-Velasco, P.; Yang, W. L.; Siekhaus, W. J. f–f origin of the insulating state in uranium dioxide: X-ray absorption experiments and first-principles calculations. Phys. Rev. B 2011, 83, 165102.

    Article  Google Scholar 

  42. Zhang, Y. D.; Hou, T. T.; Xu, Q.; Wang, Q. Y.; Bai, Y.; Yang, S. K.; Rao, D. W.; Wu, L. H.; Pan, H. B.; Chen, J. F. et al. Dual-metal sites boosting polarization of nitrogen molecules for efficient nitrogen photofixation. Adv. Sci. 2021, 8, 2100302.

    Article  CAS  Google Scholar 

  43. Liras, M.; Barawi, M.; de la Pena O’Shea, V. A. Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: From environmental to energy applications. Chem. Soc. Rev. 2019, 48, 5454–5487.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.

    Article  CAS  Google Scholar 

  45. Li, S.; Liu, Y. X.; Feng, K.; Li, C. Y.; Xu, J. B.; Lu, C.; Lin, H. P.; Feng, Y.; Ma, D.; Zhong, J. High valence state sites as favorable reductive centers for high-current-density water splitting. Angew. Chem., Int. Ed. 2023, 62, e202308670.

    Article  CAS  Google Scholar 

  46. Zhang, Y. D.; Wang, Q. Y.; Yang, S. K.; Wang, H. W.; Rao, D. W.; Chen, T.; Wang, G. M.; Lu, J. L.; Zhu, J. F.; Wei, S. Q. et al. Tuning the interaction between ruthenium single atoms and the second coordination sphere for efficient nitrogen photofixation. Adv. Funct. Mater. 2022, 32, 2112452.

    Article  CAS  Google Scholar 

  47. Wang, Q. Y.; Xiao, Y.; Yang, S. K.; Zhang, Y. D.; Wu, L. H.; Pan, H. B.; Rao, D. W.; Chen, T.; Sun, Z. H.; Wang, G. M. et al. Monitoring electron flow in nickel single-atom catalysts during nitrogen photofixation. Nano Lett. 2022, 22, 10216–10223.

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Q. Y.; Zhang, Y. D.; Lin, M. X.; Wang, H. W.; Bai, Y.; Liu, C. Y.; Lu, J. L.; Luo, Q. Q.; Wang, G. M.; Jiang, H. L. et al. Photoinduced metastable asymmetric Cu single atoms for photoreduction of CO2 to ethylene. Adv. Energy Mater., in press, DOI: https://doi.org/10.1002/aenm.202302692.

  49. Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550.

    Article  CAS  PubMed  Google Scholar 

  50. Deng, X. Y.; Verdaguer, A.; Herranz, T.; Weis, C.; Bluhm, H.; Salmeron, M. Surface chemistry of Cu in the presence of CO2 and H2O. Langmuir 2008, 24, 9474–9478.

    Article  CAS  PubMed  Google Scholar 

  51. Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J. F.; Pan, Y.; Yan, W. S. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 18044–18051.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, P. G.; Huang, Z. X.; Gao, X. P.; Hong, X.; Zhu, J. F.; Wang, G. M.; Wu, Y. E.; Zeng, J.; Zheng, X. S. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4. Adv. Mater. 2022, 34, 2200057.

    Article  CAS  Google Scholar 

  53. Li, X. Y.; Ding, Q.; Liu, J.; Dong, L. H.; Qin, X. Z.; Zhou, L. Q.; Zhao, Z. X.; Ji, H. B.; Zhang, S.; Chai, K. G. One-step ethylene purification from ternary mixtures by an ultramicroporous material with synergistic binding centers. Mater. Horiz. 2023, 10, 4463–4469.

    Article  CAS  PubMed  Google Scholar 

  54. Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

    Article  CAS  Google Scholar 

  55. Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Coδ+ interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 1222508 and U1932213), the Fundamental Research Funds for the Central Universities (No. WK2060000016), the USTC Research Funds of the Double First-Class Initiative (No. YD2310002005), and the Youth Innovation Promotion Association CAS (No. 2020454). The authors thank the beamline BL11B in SSRF, BL10B, BL04B, and BL01B in NSRL for synchrotron radiation measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yida Zhang, Haibin Pan or Xusheng Zheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Wang, Q., Liu, L. et al. Low-coordination environment design of single Co atoms for efficient CO2 photoreduction. Nano Res. 17, 3745–3751 (2024). https://doi.org/10.1007/s12274-023-6294-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6294-6

Keywords

Navigation