Skip to main content
Log in

Carbon coated LaFe0.92Pd0.08O3 composites for catalytic transfer hydrogenation: Balance in the ability of substrates adsorption and conversion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Catalytic transfer hydrogenation (CTH) is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones. However, managing the abilities of solid catalysts to adsorb substrates and to convert them into desired products is a challenging task. Herein, we report the synthesis of carbon coated LaFe0.92Pd0.08O3 composites (LFPO-8@C) for CTH of benzaldehyde (BzH) into benzyl alcohol (BzOH), using isopropanol (IPA) as hydrogen source. The coating with carbon improves the ability to adsorb/transfer reactants from solution to active sites, and the doping of Pd2+ at Fe3+ site strengthens the ability of LaFeO3 to convert BzH into BzOH. A balanced point between them (i.e., abilities to adsorb BzH and to convert BzH into BzOH) is obtained at LFPO-8@C, which exhibits a BzOH formation rate of 3.88 mmol⋅ggat-1⋅h-1 at 180 °C for 3 h, which is 1.50 and 2.72 times faster than those of LFPO-8 and LaFeO3@C. A reaction mechanism is proposed, in which the acidic sites (e.g., Fe4+, oxygen vacancy) are used for the activation of C=O bond of BzH and O–H bond of IPA, and the basic sites (e.g., lattice oxygen) for the activation of α–H (O–H) bond of IPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaser, H. U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Selective hydrogenation for fine chemicals: Recent trends and new developments. Adv. Synth. Catal. 2003, 345, 103–151.

    Article  CAS  Google Scholar 

  2. Gallezot, P.; Richard, D. Selective hydrogenation of α, β-unsaturated aldehydes. Catal. Rev. 1998, 40, 81–126.

    Article  CAS  Google Scholar 

  3. Gilkey, M. J.; Xu, B. J. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal. 2016, 6, 1420–1436.

    Article  CAS  Google Scholar 

  4. Wu, K. L.; Ling, M.; Zeng, P. Y.; Zhang, L.; Wu, T.; Guan, P. L.; Cheong, W. C.; Chen, Z.; Fang, Z.; Wei, X. W. Self-assembled multifunctional Fe3O4 hierarchical microspheres: High-efficiency lithium-ion battery materials and hydrogenation catalysts. Sci. China Mater. 2021, 64, 1058–1070.

    Article  CAS  Google Scholar 

  5. Guo, J. H.; Feng, X. Q.; Wang, S. R.; Wu, Q. K.; Lv, S. S.; Zhou, Y.; Li, H.; Chen, Z.; Zhang, Y. Z. Facile synthesis of hexagonal α-Co(OH)2 nanosheets and their superior activity in the selective reduction of nitro compounds. Dalton Trans. 2021, 50, 18061–18068.

    Article  CAS  PubMed  Google Scholar 

  6. Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B 2018, 227, 386–408.

    Article  CAS  Google Scholar 

  7. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    Article  CAS  PubMed  Google Scholar 

  8. Valentini, F.; Kozell, V.; Petrucci, C.; Marrocchi, A.; Gu, Y. L.; Gelman, D.; Vaccaro, L. Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy Environ. Sci. 2019, 12, 2646–2664.

    Article  CAS  Google Scholar 

  9. Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

    Article  CAS  Google Scholar 

  10. Li, R. Z.; Zhang, Z. D.; Liang, X.; Shen, J.; Wang, J.; Sun, W. M.; Wang, D. S.; Jiang, J. C.; Li, Y. D. Polystyrene waste thermochemical hydrogenation to ethylbenzene by a N-bridged Co, Ni dual-atom catalyst. J. Am. Chem. Soc. 2023, 145, 16218–16227.

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    Article  CAS  Google Scholar 

  12. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, https://doi.org/10.1007/s12274-023-5700-4.

  13. Wu, T.; Li, S.; Liu, S. J.; Cheong, W. C.; Peng, C.; Yao, K.; Li, Y. P.; Wang, J. Y.; Jiang, B. B.; Chen, Z. et al. Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts. Nano Res. 2022, 15, 3980–3990.

    Article  CAS  Google Scholar 

  14. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    Article  CAS  Google Scholar 

  15. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p–n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  16. Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

    Article  CAS  PubMed  Google Scholar 

  17. An, Z. D.; Li, J. Recent advances in the catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts. Green Chem. 2022, 24, 1780–1808.

    Article  CAS  Google Scholar 

  18. Nie, R. F.; Tao, Y. W.; Nie, Y. Q.; Lu, T. L.; Wang, J. S.; Zhang, Y. S.; Lu, X. Y.; Xu, C. C. Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts. ACS Catal. 2021, 11, 1071–1095.

    Article  CAS  Google Scholar 

  19. Xiao, P.; Zhu, J. J.; Zhao, D.; Zhao, Z.; Zaera, F.; Zhu, Y. J. Porous LaFeO3 prepared by an in situ carbon templating method for catalytic transfer hydrogenation reactions. ACS Appl. Mater. Interfaces 2019, 11, 15517–15527.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, Y. N.; Zhang, R.; Zhang, L.; Gu, Q. F.; Qiao, Z. A. A Resolassisted cationic coordinative Co-assembly approach to mesoporous ABO3 perovskite oxides with rich oxygen vacancy for enhanced hydrogenation of furfural to furfuryl alcohol. Angew. Chem., Int. Ed. 2021, 60, 4774–4781.

    Article  CAS  Google Scholar 

  21. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  22. Zhuang, Z. H.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    Article  CAS  Google Scholar 

  23. Chen, H. J.; Lim, C.; Zhou, M. Z.; He, Z. Y.; Sun, X.; Li, X. B.; Ye, Y. J.; Tan, T.; Zhang, H.; Yang, C. H. et al. Activating lattice oxygen in perovskite oxide by B-site cation doping for modulated stability and activity at elevated temperatures. Adv. Sci. 2021, 8, 2102713.

    Article  CAS  Google Scholar 

  24. Zhu, J. J.; Li, H. L.; Zhong, L. Y.; Xiao, P.; Xu, X. L.; Yang, X. G.; Zhao, Z.; Li, J. L. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal. 2014, 4, 2917–2940.

    Article  CAS  Google Scholar 

  25. Tompkins, F. C. Superficial chemistry and solid imperfections. Nature 1960, 186, 3–6.

    Article  Google Scholar 

  26. Campbell, C. T.; Peden, C. H. F. Oxygen vacancies and catalysis on ceria surfaces. Science 2005, 309, 713–714.

    Article  CAS  PubMed  Google Scholar 

  27. Mohammadi, A.; Farzi, A.; Thurner, C.; Klötzer, B.; Schwarz, S.; Bernardi, J.; Niaei, A.; Penner, S. Tailoring the metal-perovskite interface for promotional steering of the catalytic NO reduction by CO in the presence of H2O on Pd-lanthanum iron manganite composites. Appl. Catal., B 2022, 307, 121160.

    Article  CAS  Google Scholar 

  28. Zeng, L. R.; Cui, L.; Wang, C. Y.; Guo, W.; Gong, C. R. In-situ modified the surface of Pt-doped perovskite catalyst for soot oxidation. J. Hazard. Mater. 2020, 383, 121210.

    Article  CAS  PubMed  Google Scholar 

  29. Mahyon, N. I.; Li, T.; Tantra, B. D.; Martinez-Botas, R.; Wu, Z. T.; Li, K. Integrating Pd-doped perovskite catalysts with ceramic hollow fibre substrate for efficient CO oxidation. J. Environ. Chem. Eng. 2020, 8, 103897.

    Article  CAS  Google Scholar 

  30. Wang, S.; Zhu, J. J.; Carabineiro, S. A. C.; Xiao, P.; Zhu, Y. J. Selective etching of in-situ formed La2O3 particles to prepare porous LaCoO3 perovskite for catalytic combustion of ethyl acetate. Appl. Catal. A 2022, 635, 118554.

    Article  CAS  Google Scholar 

  31. Wang, S.; Zhu, J. J.; Yang, J.; Li, M. Y.; Zhu, Y. J. Influence of LaCoO3 perovskite oxides prepared by different method on the catalytic combustion of ethyl acetate in the presence of NO. Appl. Surf. Sci. 2023, 623, 157045.

    Article  CAS  Google Scholar 

  32. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  33. Wang, X. L.; Lyu, Q.; Tong, T. Z.; Sun, K.; Lin, L. C.; Tang, C. Y.; Yang, F. L.; Guiver, M. D.; Quan, X.; Dong, Y. C. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 2022, 13, 266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wen, Y. K.; Zhuang, Z. C.; Zhu, H.; Hao, J. C.; Chu, K. B.; Lai, F. L.; Zong, W.; Wang, C.; Ma, P. M.; Dong, W. F. et al. Isolation of metalloid boron atoms in intermetallic carbide boosts the catalytic selectivity for electrocatalytic N2 fixation. Adv. Energy Mater. 2021, 11, 2102138.

    Article  CAS  Google Scholar 

  35. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

    Article  CAS  PubMed  Google Scholar 

  36. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

    Article  CAS  Google Scholar 

  37. Xiao, P.; Xu, X. L.; Wang, S.; Zhu, J. J.; Zhu, Y. J. One-pot synthesis of LaFeO3@C composites for catalytic transfer hydrogenation reactions: Effects of carbon precursors. Appl. Catal. A 2020, 603, 117742.

    Article  CAS  Google Scholar 

  38. Xiao, P.; Xu, X. L.; Zhu, J. J.; Zhu, Y. J. In situ generation of perovskite oxides and carbon composites: A facile, effective and generalized route to prepare catalysts with improved performance. J. Catal. 2020, 383, 88–96

    Article  CAS  Google Scholar 

  39. Pugh, S.; McKenna, R.; Halloum, I.; Nielsen, D. R. Engineering Escherichia coli for renewable benzyl alcohol production. Metab. Eng. Commun. 2015, 2, 39–45.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu, J. C.; Liang, D.; Song, X. B.; Liu, T. S.; Xu, T. Y.; Wang, S. Y.; Zou, Y. Q. Sulfonic groups functionalized Zr-metal organic framework for highly catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Energy Chem. 2022, 71, 411–417.

    Article  CAS  Google Scholar 

  41. Liu, Y.; Chen, F. Y.; Zhang, J. H.; He, L.; Peng, L. C. Organic acid-assisted design of zirconium-lignocellulose hybrid for highly efficient upgrading levulinic acid to γ-valerolactone. Fuel 2022, 315, 123150.

    Article  CAS  Google Scholar 

  42. Onrubia-Calvo, J. A.; Pereda-Ayo, B.; Bermejo-López, A.; Caravaca, A.; Vernoux, P.; González-Velasco, J. R. Pd-doped or Pd impregnated 30% La0.7Sr0.3CoO3/Al2O3 catalysts for NOx storage and reduction. Appl. Catal. B 2019, 259, 118052.

    Article  CAS  Google Scholar 

  43. Kim, K. J.; Lim, C.; Bae, K. T.; Lee, J. J.; Oh, M. Y.; Kim, H. J.; Kim, H.; Kim, G.; Shin, T. H.; Han, J. W. et al. Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells. Appl. Catal. B 2022, 314, 121517.

    Article  CAS  Google Scholar 

  44. Passe-Coutrin, N.; Altenor, S.; Cossement, D.; Jean-Marius, C.; Gaspard, S. Comparison of parameters calculated from the BET and Freundlich isotherms obtained by nitrogen adsorption on activated carbons: A new method for calculating the specific surface area. Microporous Mesoporous Mater. 2008, 111, 517–522.

    Article  CAS  Google Scholar 

  45. Li, W. C.; Lu, A. H.; Guo, S. C. Control of mesoporous structure of aerogels derived from cresol-formaldehyde. J. Colloid Interface Sci. 2002, 254, 153–157.

    Article  CAS  PubMed  Google Scholar 

  46. Ma, X. M.; Li, L. P.; Yang, L.; Su, C. Y.; Wang, K.; Yuan, S. B.; Zhou, J. G. Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies. J. Hazard. Mater. 2012, 209–210, 467–477

    Article  PubMed  Google Scholar 

  47. Manorama, S. V.; Reddy, C. V. G.; Rao, V. J. X-ray photoelectron spectroscopic studies of noble metal-incorporated BaSnO3 based gas sensors. Appl. Surf. Sci. 2001, 174, 93–105.

    Article  CAS  Google Scholar 

  48. Zhang, R. D.; Villanueva, A.; Alamdari, H.; Kaliaguine, S. Cu- and Pd-substituted nanoscale Fe-based perovskites for selective catalytic reduction of NO by propene. J. Catal. 2006, 237, 368–380.

    Article  CAS  Google Scholar 

  49. Zhou, K. B.; Chen, H. D.; Tian, Q.; Hao, Z. P.; Shen, D. X.; Xu, X. B. Pd-containing perovskite-type oxides used for three-way catalysts. J. Mol. Catal. A 2002, 189, 225–232.

    Article  CAS  Google Scholar 

  50. Ziaei-Azad, H.; Khodadadi, A.; Esmaeilnejad-Ahranjani, P.; Mortazavi, Y. Effects of Pd on enhancement of oxidation activity of LaBO3 (B = Mn, Fe, Co and Ni) pervoskite catalysts for pollution abatement from natural gas fueled vehicles. Appl. Catal. B 2011, 102, 62–70.

    Article  CAS  Google Scholar 

  51. Polo-Garzon, F.; Wu, Z. L. Acid-base catalysis over perovskites: A review. J. Mater. Chem. A 2018, 6, 2877–2894.

    Article  CAS  Google Scholar 

  52. Foo, G. S.; Polo-Garzon, F.; Fung, V.; Jiang, D. E.; Overbury, S. H.; Wu, Z. L. Acid-base reactivity of perovskite catalysts probed via conversion of 2-propanol over titanates and zirconates. ACS Catal. 2017, 7, 4423–4434.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the National Natural Science Foundation of China (Nos. 42277485, 21976141, and 22102123), the Department of Science and Technology of Hubei Province (No. 2021CFA034), the Department of Education of Hubei Province (Nos. T2020011 and Q20211712), and the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing (Nos. STRZ202202 and STRZ202101) is gratefully acknowledged. S. A.C. C. acknowledges Fundaãço para a Ciência e a Tecnologia (FCT), Portuqal for Scientific Employment Stimulus-Institutional Call (CEEC-INST/00102/2018), and Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/5006/2020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Xiao or Junjiang Zhu.

Electronic Supplementary Material

12274_2023_6282_MOESM1_ESM.pdf

Carbon coated LaFe0.92Pd0.08O3 composites for catalytic transfer hydrogenation: Balance in the ability of substrates adsorption and conversion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhang, N., Xiao, P. et al. Carbon coated LaFe0.92Pd0.08O3 composites for catalytic transfer hydrogenation: Balance in the ability of substrates adsorption and conversion. Nano Res. 17, 3724–3732 (2024). https://doi.org/10.1007/s12274-023-6282-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6282-x

Keywords

Navigation