Skip to main content
Log in

Novel CoP/CoMoP2 heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The exploration of new heterojunction materials is of great significance in reducing the cost of existing noble metal catalysts and thus realizing the large-scale application of electrocatalytic hydrolysis technology. Herein, a novel CoP/CoMoP2 heterojunction was synthesized and served as a hydrogen evolution reaction (HER) electrocatalyst. The heterojunction has morphology of nanoporous structure, which is conducive to exposing more active sites and facilitating bubbles transport. The charge distribution is optimized by a strong interface interaction between CoP and CoMoP2. The catalyst’s conductivity and the adsorption properties of the intermediates have both been enhanced. CoP/CoMoP2 demonstrates excellent HER activity with an overpotential of 93.6 mV at 10 mA·cm−2, which is competitive with the reported performance of analogous electrocatalysts. This work provides insights into the development of innovative phosphide-based heterojunction electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, S. Y.; Shui, J. L. Mechanism and properties of emerging nanostructured hydrogen storage materials. Battery Energy 2022, 1, 20220033.

    Article  CAS  Google Scholar 

  2. Osman, A. I.; Mehta, N.; Elgarahy, A. M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A. H.; Rooney, D. W. Hydrogen production, storage, utilisation, and environmental impacts: A review. Environ. Chem. Lett. 2022, 20, 153–188.

    Article  CAS  Google Scholar 

  3. Shen, S. J.; Hu, Z. Y.; Zhang, H. H.; Song, K.; Wang, Z. P.; Lin, Z. P.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Highly active Si sites enabled by negative valent Ru for electrocatalytic hydrogen evolution in LaRuSi. Angew. Chem., Int. Ed. 2022, 61, e202206460.

    Article  CAS  Google Scholar 

  4. Lin, Z. P.; Wang, Z. P.; Gong, J. J.; Jin, T. C.; Shen, S. J.; Zhang, Q. H.; Wang, J. C.; Zhong, W. W. Reversed spillover effect activated by Pt atom dimers boosts alkaline hydrogen evolution reaction. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202307510.

  5. Fu, Q.; Han, J. C.; Wang, X. J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W. W.; Liu, S. W.; Gao, T. L.; Zhang, Z. H. et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, 1907818

    Article  CAS  Google Scholar 

  6. Zhang, L. L.; Wang, Z. P.; Zhang, J. T.; Lin, Z. P.; Zhang, Q. H.; Zhong, W. W.; Wu, G. F. High activity and stability in Ni2P/(Co,Ni)OOH heterointerface with a multiple-hierarchy structure for alkaline hydrogen evolution reaction. Nano Res. 2023, 16, 6552–6559.

    Article  Google Scholar 

  7. Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline- amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

    Article  CAS  Google Scholar 

  8. Li, J. Y.; Mao, X.; Gong, W. B.; Wang, X. Y.; Jiang, Y. W.; Long, R.; Du, A. J.; Xiong, Y. J. Engineering active Ni-doped Co2P catalyst for efficient electrooxidation coupled with hydrogen evolution. Nano Res. 2023, 16, 6728–6735.

    Article  CAS  Google Scholar 

  9. Liu, D.; Xu, G. Y.; Yang, H.; Wang, H. T.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2208358.

    Article  CAS  Google Scholar 

  10. Lv, Y.; Wu, X. Y.; Li, H.; Zhang, H. B.; Li, J. X.; Zhou, Z. Y.; Guo, J. X.; Jia, D. Z. Ultrathin oxygen-containing graphdiyne wrapping CoP for enhanced electrocatalytic hydrogen generation. Nano Res. 2023, 16, 5073–5079.

    Article  CAS  Google Scholar 

  11. Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.

    Article  CAS  Google Scholar 

  12. Li, J. Y.; Hu, J.; Zhang, M. K.; Gou, W. Y.; Zhang, S.; Chen, Z.; Qu, Y. Q.; Ma, Y. Y. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 3502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xue, H. Y.; Meng, A. L.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C. S. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 2021, 14, 4173–4181

    Article  CAS  Google Scholar 

  14. Wang, M. D.; Liu, X. Y.; Wu, X. Realizing efficient electrochemical overall water electrolysis through hierarchical CoP@NiCo-LDH nanohybrids. Nano Energy 2023, 114, 108681.

    Article  CAS  Google Scholar 

  15. Cao, X. F.; Xing, S. Q.; Ma, D.; Tan, Y.; Zhu, Y. C.; Hu, J.; Wang, Y.; Chen, X.; Chen, Z. Design of high-performance ion-doped CoP systems for hydrogen evolution: From multi-level screening calculations to experiment. J. Energy Chem. 2023, 82, 307–316.

    Article  CAS  Google Scholar 

  16. Song, J. H.; Zhu, C. Z.; Xu, B. Z.; Fu, S. F.; Engelhard, M. H.; Ye, R. F.; Du, D.; Beckman, S. P.; Lin, Y. H. Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx. phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1601555.

    Article  Google Scholar 

  17. Li, J. W.; Hu, Y. Z.; Huang, X.; Zhu, Y.; Wang, D. L. Bimetallic phosphide heterostructure coupled with ultrathin carbon layer boosting overall alkaline water and seawater splitting. Small 2023, 19, 2206533.

    Article  CAS  Google Scholar 

  18. Zhang, X. R.; Sun, C. Y.; Xu, S. S.; Huang, M. R.; Wen, Y.; Shi, X. R. DFT-assisted rational design of CoMxP/CC (M = Fe, Mn, and Ni) as efficient electrocatalyst for wide pH range hydrogen evolution and oxygen evolution. Nano Res. 2022, 15, 8897–8907.

    Article  CAS  Google Scholar 

  19. Huang, H. W.; Cho, A.; Kim, S.; Jun, H.; Lee, A.; Han, J. W.; Lee, J. Structural design of amorphous CoMoP. with abundant active sites and synergistic catalysis effect for effective water splitting. Adv. Funct. Mater. 2020, 30, 2003889.

    Article  CAS  Google Scholar 

  20. El-Refaei, S. M.; Russo, P. A.; Amsalem, P.; Koch, N.; Pinna, N. The importance of ligand selection on the formation of metal phosphonate-derived CoMoP and CoMoP2 nanoparticles for catalytic hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 4147–4156.

    Article  CAS  Google Scholar 

  21. Fang, S. L.; Chou, T. C.; Samireddi, S.; Chen, K. H.; Chen, L. C.; Chen, W. F. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide. Roy. Soc. Open Sci. 2017, 4, 161016.

    Article  Google Scholar 

  22. Cao, W. J.; Zhao, R. H.; Liu, G. H.; Wu, L. L.; Li, J. D. Three-dimensional ordered macroporous design of heterogeneous nickel-iron phosphide as bifunctional electrocatalyst for enhanced overall water splitting. Appl. Surf. Sci. 2023, 607, 154905.

    Article  CAS  Google Scholar 

  23. Qiao, F.; Sun, K. Y.; Chu, H. Q.; Wang, J. F.; Xie, Y.; Chen, L. P.; Yan, T. T. Design strategies of ZnO heterojunction arrays towards effective photovoltaic applications. Battery Energy 2022, 1, 20210008.

    Article  CAS  Google Scholar 

  24. Feng, Y. H.; Ran, N.; Wang, X. L.; Liu, Q. N.; Wang, J. C.; Liu, L. J.; Suenaga, K.; Zhong, W. W.; Ma, R. G.; Liu, J. J. Nanoparticulate WN/Ni3C coupling in ceramic coatings for boosted urea electro-oxidation. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202302452.

  25. Sun, B. J.; Xu, D.; Wang, Z. B.; Zhan, Y. F.; Zhang, K. Interfacial structure design for triboelectric nanogenerators. Battery Energy 2022, 1, 20220001.

    Article  Google Scholar 

  26. Zheng, Z. B.; Liang, W. Z.; Lin, R. Z.; Hu, Z.; Wang, Y. C.; Lu, H. S.; Zhong, W. W.; Shen, S. J.; Pan, Y. Facile synthesis of zinc indium oxide nanofibers distributed with low content of silver for superior antibacterial activity. Small Struct. 2023, 4, 2200291.

    Article  CAS  Google Scholar 

  27. Jeghan, S. M. N.; Kim, J.; Lee, G. Hierarchically designed CoMo marigold flower-like 3D nano-heterostructure as an efficient electrocatalyst for oxygen and hydrogen evolution reactions. Appl. Surf. Sci. 2021, 546, 149072.

    Article  CAS  Google Scholar 

  28. Zhou, W.; Wu, M. M.; Li, G. R. Rambutan-like CoP@Mo-Co-O hollow microspheres for efficient hydrogen evolution reaction in alkaline solution. Chin. J. Catal. 2020, 41, 691–697.

    Article  CAS  Google Scholar 

  29. Li, G. W.; Fu, C. G.; Wu, J. Q.; Rao, J. C.; Liou, S. C.; Xu, X. J.; Shao, B. Q.; Liu, K.; Liu, E. K.; Kumar, N. et al. Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution. Appl. Catal. B Environ. 2019, 254, 1–6.

    Article  CAS  Google Scholar 

  30. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  31. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  32. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  34. Shen, S. J.; Lin, Z. P.; Song, K.; Wang, Z. P.; Huang, L. G.; Yan, L. H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Reversed active sites boost the intrinsic activity of graphene-like cobalt selenide for hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 12360–12365.

    Article  CAS  Google Scholar 

  35. Zhang, Y. M.; Liu, L. Y.; Zhao, L. L.; Hou, C. X.; Huang, M. N.; Algadi, H.; Li, D. Y.; Xia, Q.; Wang, J.; Zhou, Z. R. et al. Sandwichlike CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv. Compos. Hybrid Mater. 2022, 5, 2601–2610.

    Article  CAS  Google Scholar 

  36. Chen, Z. X.; Jing, F.; Luo, M. H.; Wu, X. H.; Fu, H. C.; Xiao, S. W.; Yu, B. B.; Chen, D.; Xiong, X. Q.; Jin, Y. X. Local coordination and electronic interactions of Pd/MXene via dual-atom codoping with superior durability for efficient electrocatalytic ethanol oxidation. Carbon Energy, in press, https://doi.org/10.1002/cey2.443.

  37. Chen, T.; Ma, J.; Chen, S. Y.; Wei, Y. M.; Deng, C. S.; Chen, J. C.; Hu, J. Q.; Ding, W. P. Construction of heterostructured CoP/CN/Ni: Electron redistribution towards effective hydrogen generation and oxygen reduction. Chem. Eng. J. 2021, 415, 129031.

    Article  CAS  Google Scholar 

  38. Jin, H.; Liu, S.; Pei, L.; Li, G.; Ma, Z. F.; Bai, W. F.; Wu, S. T.; Yuan, Y. J.; Zhong, J. S. Construction of hierarchical CoP@Ni2P core–shell nanoarrays for efficient electrocatalytic hydrogen evolution in alkaline solution. RSC Adv. 2021, 11, 22467–22472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Y. Y.; Qiu, Y. F.; Ma, Z.; Wang, Y. P.; Zhang, Y. X.; Ying, Y. X.; Jiang, Y. N.; Zhu, Y. X.; Liu, S. Q. Core–corona Co/CoP clusters strung on carbon nanotubes as a Schottky catalyst for glucose oxidation assisted H2 production. J. Mater. Chem. A 2021, 9, 10893–10908.

    Article  CAS  Google Scholar 

  40. Yu, R.; Du, Y. X.; Zhao, H. F.; Cao, F. F.; Lu, W. T.; Zhang, G. Crystalline/amorphous CoP/MnOx heterostructure derived from phase separation for electrochemical catalysis of alkaline hydrogen evolution reaction. Int. J. Hydrogen. Energy 2023, 48, 2593–2604.

    Article  CAS  Google Scholar 

  41. Yang, Y. Y.; Zhu, C. M.; Zhou, Y.; Zhang, Y.; Xie, Y. D.; Lv, L. W.; Chen, W. L.; He, Y. Y.; Hu, Z. A. Design and synthesis Zn doped CoP/Co2P nanowire arrays for boosting hydrogen generation reaction. J. Solid State Chem. 2020, 285, 121231.

    Article  CAS  Google Scholar 

  42. Liu, S. S.; Ma, L. J.; Li, J. S. Dual-metal-organic-framework derived CoP/MoP hybrid as an efficient electrocatalyst for acidic and alkaline hydrogen evolution reaction. J. Colloid Interf. Sci. 2023, 631, 147–153.

    Article  CAS  Google Scholar 

  43. Liu, S. S.; Li, J. S. The facile synthesis of FeP/CoP confined in N, P co-doped carbon derived from MOFs for an efficient pH-universal hydrogen evolution reaction. Dalton Trans. 2022, 51, 12307–12313.

    Article  CAS  PubMed  Google Scholar 

  44. Song, X. Z.; Su, Q. F.; Li, S. J.; Liu, G. C.; Zhang, N.; Zhu, W. Y.; Wang, Z. H.; Tan, Z. Q. Heterostructural Co/CeO2/Co2P/CoP@NC dodecahedrons derived from CeO2-inserted zeolitic imidazolate framework-67 as efficient bifunctional electrocatalysts for overall water splitting. Int. J. Hydrogen. Energy 2020, 45, 30559–30570.

    Article  CAS  Google Scholar 

  45. Liang, T. T.; Liu, Y. D.; Zhang, P. F.; Liu, C. T.; Ma, F.; Yan, Q. Y.; Dai, Z. F. Interface and valence modulation on scalable phosphorene/phosphide lamellae for efficient water electrolysis. Chem. Eng. J. 2020, 395, 124976.

    Article  CAS  Google Scholar 

  46. Wang, Z. H.; Niu, Z. Y.; Meng, Y. L.; Wang, X. F.; Zhu, W. Y.; Zhang, N.; Song, X. Z.; Tan, Z. Q. Interface engineering in CoP/CePO4 derived from a Prussian blue analogue as a highly efficient electrocatalyst for alkaline hydrogen evolution reaction. ChemElectroChem 2021, 8, 3762–3766.

    Article  CAS  Google Scholar 

  47. Sun, S. C.; Wang, Z. H.; Meng, S. C.; Yu, R.; Jiang, D. L.; Chen, M. Iron and chromium co-doped cobalt phosphide porous nanosheets as robust bifunctional electrocatalyst for efficient water splitting. Nanotechnology 2022, 33, 075204.

    Article  CAS  Google Scholar 

  48. Guo, L.; Bai, X.; Xue, H.; Sun, J.; Song, T. S.; Zhang, S.; Qin, L.; Huang, K. K.; He, F.; Wang, Q. MOF-derived hierarchical 3D bi-doped CoP nanoflower eletrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Chem. Commun. 2020, 66, 7702–7705.

    Article  Google Scholar 

  49. Jiao, Y. Q.; Yan, H. J.; Wang, D. X.; Wang, X. W.; Xu, S. W.; Xie, Y.; Wu, A. P.; Jiang, L.; Tian, C. G.; Wang, R. H. et al. Multi-touch cobalt phosphide–tungsten phosphide heterojunctions anchored on reduced graphene oxide boosting wide pH hydrogen evolution. Sci. China Mater. 2022, 65, 1225–1236.

    Article  CAS  Google Scholar 

  50. Yu, H. B.; Qi, L. L.; Hu, Y.; Qu, Y.; Yan, P. X.; Isimjan, T. T.; Yang, X. L. Nanowire- structured FeP-CoP arrays as highly active and stable bifunctional electrocatalyst synergistically promoting high-current overall water splitting. J. Colloid Interf. Sci. 2021, 600, 811–819.

    Article  CAS  Google Scholar 

  51. Zeng, Y. X.; Zhu, X. S.; Zhang, Y. H.; Chen, S. Q.; Zhang, W.; Wang, L. One- step novel synthesis of Co2P/CoP and its hydrogen evolution reaction performance in alkaline media. Mater. Chem. Phys. 2022, 277, 125419.

    Article  CAS  Google Scholar 

  52. Zhan, J.; Cao, X.; Zhou, J. M.; Xu, G.; Lei, B.; Wu, M. H. Porous array with CoP nanoparticle modification derived from MOF grown on carbon cloth for effective alkaline hydrogen evolution. Chem. Eng. J. 2021, 416, 128943.

    Article  CAS  Google Scholar 

  53. Liu, G. B.; Wang, M.; Xu, Y. S.; Wang, X. Y.; Li, X. K.; Liu, J.; Cui, X. J.; Jiang, L. H. Porous CoP/Co2P heterostructure for efficient hydrogen evolution and application in magnesium/seawater battery. J. Power Sources, 2021, 486, 229351.

    Article  CAS  Google Scholar 

  54. Choi, G. H.; Moon, J.; Song, E.; Cho, S.; Park, K. W.; Park, J. T. Rational design of hierarchical MOF-derived CoP@Co-Fe LDH bifunctional electrocatalyst: An approach toward efficient overall water splitting in alkaline media. Int. J. Energy Res. 2022, 46, 24633–24644.

    Article  CAS  Google Scholar 

  55. Chai, L. L.; Hu, Z. Y.; Wang, X.; Xu, Y. W.; Zhang, L. J.; Li, T. T.; Hu, Y.; Qian, J. J.; Huang, S. M. Stringing bimetallic metal-organic framework-derived cobalt phosphide composite for high-efficiency overall water splitting. Adv. Sci. 2020, 7, 1903195.

    Article  CAS  Google Scholar 

  56. Li, X. T.; Liu, Y. Z.; Sun, Q. D.; Huang, W. H.; Wang, Z. L.; Chueh, C. C.; Chen, C. L.; Zhu, Z. L. Surface engineered CoP/Co3O4 heterojunction for high-performance bi-functional water splitting electro-catalysis. Nanoscale 2021, 13, 20281–20288.

    Article  CAS  PubMed  Google Scholar 

  57. Sun, Y. Q.; Li, X. L.; Zhang, T.; Xu, K.; Yang, Y. S.; Chen, G. Z.; Li, C. C.; Xie, Y. Nitrogen-doped cobalt diselenide with cubic phase maintained for enhanced alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 21575–21582.

    Article  CAS  Google Scholar 

  58. Xu, J. Y.; Liu, T. F.; Li, J. J.; Li, B.; Liu, Y. F.; Zhang, B. S.; Xiong, D. H.; Amorim, I.; Li, W.; Liu, L. F. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 2018, 11, 1819–1827.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52271184 and 52072255) and the Natural Science Foundation of Zhejiang Province, China (Nos. LY23E020001 and LTY20E020001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jitang Zhang or Shijie Shen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Shi, X., Xu, A. et al. Novel CoP/CoMoP2 heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen evolution. Nano Res. 17, 3693–3699 (2024). https://doi.org/10.1007/s12274-023-6270-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6270-1

Keywords

Navigation