Skip to main content
Log in

EGFR-targeted and gemcitabine-incorporated chemogene for combinatorial pancreatic cancer treatment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Pancreatic cancer stands out as a recognized intractable tumor due to its high malignancy and mortality rates, which are largely attributed to the insensitivity of current clinical chemotherapies or multidrug-resistance. Combinatorial chemo and gene therapy that integrates different therapeutic targets, may increase the chemosensitivity of pancreatic cancer and synergistically enhance the antitumor efficacy. However, conventional co-delivery of gene and chemo drugs is intensively dependent on complex nanoparticle delivery systems, thus would be limited by unstable drug packaging, nonspecific biodistribution, and biosafety problem. Herein, we rationally designed an epidermal growth factor-receptor (EGFR)-targeted and gemcitabine-incorporated oligonucleotide (termed as chemogene) with anti-Bcl-2 sequence, which achieves simple and precise integration of gemcitabine into a gene regulative agent, as well as the EGFR-targeted delivery for pancreatic cancer therapy. Through solid-phase synthesis, gemcitabine, as the first-line chemodrug for pancreatic cancer, is introduced to the antisense oligonucleotide to replace all cytosine nucleosides to obtain the gemcitabine-integrated chemogene (Ge-ASOBcl-2). Thereafter, Ge-ASOBcl-2 is covalently coupled with EGFR nanobody to construct the final targeted chemogene without any exogenous carriers. Notably, this nanobody-conjugated chemogene exhibits remarkable tumor targeting capability and antitumor effects both in vitro and in vivo, which initiates a first step toward the application of combinatorial chemo and gene therapy for future pancreatic cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamisawa, T.; Wood, L. D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet 2016, 388, 73–85.

    Article  CAS  PubMed  Google Scholar 

  2. Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C. D.; Biankin, A. V.; Neale, R. E.; Tempero, M.; Tuveson, D. A.; Hruban, R. H. et al.. Pancreatic cancer. Nat. Rev. Dis. Primers 2016, 2, 16022.

    Article  PubMed  Google Scholar 

  3. Gupta, R.; Amanam, I.; Chung, V. Current and future therapies for advanced pancreatic cancer. J. Surg. Oncol. 2017, 116, 25–34.

    Article  PubMed  Google Scholar 

  4. Heinrich, S.; Lang, H. Neoadjuvant therapy of pancreatic cancer: Definitions and benefits. Int. J. Mol. Sci. 2017, 18, 1622.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C. D.; Biankin, A. V.; Neale, R. E.; Tempero, M.; Tuveson, D. A.; Hruban, R. H. et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2016, 2, 16022.

    Article  PubMed  Google Scholar 

  6. Okamoto, K.; Ocker, M.; Neureiter, D.; Dietze, O.; Zopf, S.; Hahn, E. G.; Herold, C. bcl-2-specific siRNAs restore gemcitabine sensitivity in human pancreatic cancer cells. J. Cell. Mol. Med. 2007, 11, 349–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, C. B.; Chan, K. K.; Lin, W. J.; Soehartono, A. M.; Lin, G. M.; Toh, H.; Yoon, H. S.; Chen, C. K.; Yong, K. T. Biodegradable nanocarriers for small interfering ribonucleic acid (siRNA) codelivery strategy increase the chemosensitivity of pancreatic cancer cells to gemcitabine. Nano Res. 2017, 10, 3049–3067.

    Article  CAS  Google Scholar 

  8. Yang, S.; Mao, Y. J.; Zhang, H. J.; Xu, Y.; An, J.; Huang, Z. W. The chemical biology of apoptosis: Revisited after 17 years. Eur. J. Med. Chem. 2019, 177, 63–75.

    Article  CAS  PubMed  Google Scholar 

  9. Xu, M.; Chen, X. M.; Han, Y. L.; Ma, C. Q.; Ma, L.; Li, S. R. Clusterin silencing sensitizes pancreatic cancer MIA-PaCa-2 cells to gmcitabine via regulation of NF-kB/Bcl-2 signaling. Int. J. Clin. Exp. Med. 2015, 8, 12476–12486.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng, H.; Liong, M.; Xia, T.; Li, Z. X.; Ji, Z. X.; Zink, J. I.; Nel, A. E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-Glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010, 4, 4539–4550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bold, R. J.; Chandra, J.; McConkey, D. J. Gemcitabine-induced programmed cell death (apoptosis) of human pancreatic carcinoma is determined by Bcl-2 content. Ann. Surg. Oncol. 1999, 6, 279–285.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, X.; Wang, X. C.; Sun, W.; Cheng, K. M.; Qin, H.; Han, X. X.; Lin, Y.; Wang, Y. W.; Lang, J. Y.; Zha, R. F. et al. Precision design of nanomedicines to restore gemcitabine chemosensitivity for personalized pancreatic ductal adenocarcinoma treatment. Biomaterials 2018, 158, 44–55.

    Article  CAS  PubMed  Google Scholar 

  13. Xin, X. F.; Lin, F.; Wang, Q. Y.; Yin, L. F.; Mahato, R. I. ROS-responsive polymeric micelles for triggered simultaneous delivery of PLK1 inhibitor/miR-34a and effective synergistic therapy in pancreatic cancer. ACS Appl. Mater. Interfaces 2019, 11, 14647–14659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 2019, 70, 307–321.

    Article  CAS  PubMed  Google Scholar 

  15. Schizas, D.; Charalampakis, N.; Kole, C.; Economopoulou, P.; Koustas, E.; Gkotsis, E.; Ziogas, D.; Psyrri, A.; Karamouzi, M. V. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat. Rev. 2020, 86, 102016.

    Article  CAS  PubMed  Google Scholar 

  16. Xue, T. Y.; Zhang, Z. R., Fang, T. L.; Li, B. Q.; Li, Y.; Li, L. Y.; Jiang, Y. H.; Duan, F. F.; Meng, F. Q.; Liang, X. et al. Cellular vesicles expressing PD-1-blocking scFv reinvigorate T cell immunity against cancer. Nano Res. 2022, 15, 5295–5304.

    Article  ADS  CAS  Google Scholar 

  17. Li, B. Q.; Fang, T. L.; Li, Y.; Xue, T. Y.; Zhang, Z. R.; Li, L. Y.; Meng, F. Q.; Wang, J. Q.; Hou, L. L.; Liang, X. et al. Engineered T cell extracellular vesicles displaying PD-1 boost anti-tumor immunity. Nano Today 2022, 46, 101606.

    Article  CAS  Google Scholar 

  18. Meng, F. Q.; Li, L. Y.; Zhang, Z. R.; Lin, Z. D.; Zhang, J. X.; Song, X.; Xue, T. Y.; Xing, C. Y.; Liang, X.; Zhang, X. D. Biosynthetic neoantigen displayed on bacteria derived vesicles elicit systemic antitumour immunity. J. Extracell. Vesicles 2022, 11, 12289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang, W. L.; Li, L. Y.; Lin, Z. D.; Zhang, Y. L.; Jing, Z. Y.; Li, Y.; Zhang, Z. R.; Hou, L. L.; Liang, X.; Zhang, X. D. et al. Engineered IL-15/IL-15Rα-expressing cellular vesicles promote T cell antitumor immunity. Extracell. Vesicle 2023, 2, 100021.

    Article  Google Scholar 

  20. Li, L. Y.; Miao, Q. W.; Meng, F. Q.; Li, B. Q.; Xue, T. Y.; Fang, T. L.; Zhang, Z. R.; Zhang, J. X.; Ye, X. Y.; Kang, Y. et al. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy. Theranostics 2021, 11, 6033–6043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rahib, L.; Smith, B. D.; Aizenberg, R.; Rosenzweig, A. B.; Fleshman, J. M.; Matrisian, L. M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921.

    Article  CAS  PubMed  Google Scholar 

  22. Yamakawa, K.; Nakano-Narusawa, Y.; Hashimoto, N.; Yokohira, M.; Matsuda, Y. Development and clinical trials of nucleic acid medicines for pancreatic cancer treatment. Int. J. Mol. Sci. 2019, 20, 4224.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, Y.; Wu, W.; Wang, Y. Y.; Han, S. S.; Yuan, Y. Y.; Huang, J. S.; Shuai, X. T.; Peng, Z. Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater. Sci. 2021, 9, 6673–6690.

    Article  CAS  PubMed  Google Scholar 

  24. Yamanaka, K.; Rocchi, P.; Miyake, H.; Fazli, L.; So, A.; Zangemeister-Wittke, U.; Gleave, M. E. Induction of apoptosis and enhancement of chemosensitivity in human prostate cancer LNCaP cells using bispecific antisense oligonucleotide targeting Bcl-2 and Bcl-xL genes. BJU Int. 2006, 97, 1300–1308.

    Article  CAS  PubMed  Google Scholar 

  25. Ye, Z.; Wu, W. R.; Qin, Y. F.; Hu, J.; Liu, C.; Seeberger, P. H.; Yin, J. An integrated therapeutic delivery system for enhanced treatment of hepatocellular carcinoma. Adv. Funct. Mater. 2018, 28, 1706600.

    Article  Google Scholar 

  26. Garbuzenko, O. B.; Saad, M.; Pozharov, V. P.; Reuhl, K. R.; Mainelis, G.; Minko, T. Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance. Proc. Natl. Acad. Sci. USA 2010, 107, 10737–10742.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, B.; Hu, F.; Zhang, J. F.; Wang, C. L.; Li, L. L. A biomimetic coordination nanoplatform for controlled encapsulation and delivery of drug-gene combinations. Angew. Chem., Int. Ed. 2019, 58, 8804–8808.

    Article  CAS  Google Scholar 

  28. Yin, F.; Yang, C. B.; Wang, Q. Q.; Zeng, S. W.; Hu, R.; Lin, G. M.; Tian, J. L.; Hu, S. Y.; Lan, R. F.; Yoon, H. S. et al. A light-driven therapy of pancreatic adenocarcinoma using gold nanorods-based nanocarriers for Co-delivery of doxorubicin and siRNA. Theranostics 2015, 5, 818–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pan, G. F.; Ma, Y.; Zhang, J.; Guo, Y. Y.; Ding, F.; Ge, H.; Li, Q. F.; Zhu, X. Y.; Zhang, C. Engineering a floxuridine-integrated RNA prism as precise nanomedicine for drug delivery. Chem. Res. Chin. Univ. 2020, 36, 274–280.

    Article  CAS  Google Scholar 

  30. Mou, Q. B.; Ma, Y.; Ding, F.; Gao, X. H.; Yan, D. Y.; Zhu, X. Y.; Zhang, C. Two-in-one chemogene assembled from drug-integrated antisense oligonucleotides to reverse chemoresistance. J. Am. Chem. Soc. 2019, 141, 6955–6966.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, L. J.; Guo, Y. Y.; Qian, Q. H.; Yan, D. Y.; Li, Y. H.; Zhu, X. Y.; Zhang, C. Carrier-free delivery of precise drug-chemogene conjugates for synergistic treatment of drug-resistant cancer. Angew. Chem., Int. Ed. 2020, 59, 17944–17950.

    Article  CAS  Google Scholar 

  32. Zhu, L. J.; Yang, J. P.; Ma, Y.; Zhu, X. Y.; Zhang, C. Aptamers entirely built from therapeutic nucleoside analogues for targeted cancer therapy. J. Am. Chem. Soc. 2022, 144, 1493–1497.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y. H.; Zhang, J.; Guo, Y. Y.; Wang, P.; Su, Y.; Jin, X.; Zhu, X. Y.; Zhang, C. Drug-grafted DNA as a novel chemogene for targeted combinatorial cancer therapy. Exploration 2022, 2, 20210172.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sanjanwala, D.; Patravale, V. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discovery Today 2023, 28, 103550.

    Article  CAS  PubMed  Google Scholar 

  35. Zeltz, C.; Primac, I.; Erusappan, P.; Alam, J.; Noel, A.; Gullberg, D. Cancer-associated fibroblasts in desmoplastic tumors: Emerging role of integrins. Semin. Cancer Biol. 2020, 62, 166–181.

    Article  CAS  PubMed  Google Scholar 

  36. Yu, X. Y.; Xu, Q. L.; Wu, Y.; Jiang, H. J.; Wei, W.; Zulipikaer, A.; Guo, Y.; Jirimutu; Chen, J. Nanobodies derived from Camelids represent versatile biomolecules for biomedical applications. Biomater. Sci. 2020, 8, 3559–3573.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Q. S.; Ding, F.; Liu, X. L.; Shen, J.; Su, Y.; Qian, J. W.; Zhu, X. Y.; Zhang, C. Nanobody-guided targeted delivery of microRNA via nucleic acid nanogel to inhibit the tumor growth. J. Control. Release 2020, 10, 425–434.

    Article  Google Scholar 

  38. Salvador, J. P.; Vilaplana, L.; Marco, M. P. Nanobody: Outstanding features for diagnostic and therapeutic applications. Anal. Bioanal. Chem. 2019, 411, 1703–1713.

    Article  CAS  PubMed  Google Scholar 

  39. Verma, H. K.; Kampalli, P. K.; Lakkakula, S.; Chalikonda, G.; Bhaskar, L. V. K. S.; Pattnaik, S. A retrospective look at anti-EGFR agents in pancreatic cancer therapy. Curr. Drug Metab. 2019, 20, 958–966.

    Article  CAS  PubMed  Google Scholar 

  40. Troiani, T.; Martinelli, E.; Capasso, A.; Morgillo, F.; Orditura, M.; De Vita, F.; Ciardiello, F. Targeting EGFR in pancreatic cancer treatment. Curr. Drug Targets 2012, 13, 802–810.

    Article  CAS  PubMed  Google Scholar 

  41. Chong, C. R.; Jänne, P. A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med. 2013, 19, 1389–400.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yao, H. J.; Song, W. P.; Cao, R.; Ye, C.; Zhang, L.; Chen, H. B.; Wang, J. T.; Shi, Y. C.; Li, R.; Li, Y. et al. An EGFR/HER2-targeted conjugate sensitizes gemcitabine-sensitive and resistant pancreatic cancer through different SMAD4-mediated mechanisms. Nat. Commun. 2022, 13, 5506.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moore, M. J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J. R.; Gallinger, S.; Au, H. J.; Murawa, P.; Walde, D.; Wolff, R. A. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 2007, 25, 1960–1966.

    Article  CAS  PubMed  Google Scholar 

  44. Holliger, P.; Hudson, P. J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 2005, 23, 1126–1136.

    Article  CAS  PubMed  Google Scholar 

  45. Khodabakhsh, F.; Behdani, M.; Rami, A.; Kazemi-Lomedasht, F. Single-domain antibodies or nanobodies: A class of next-generation antibodies. Int. Rev. Immunol. 2018, 37, 316–322.

    Article  CAS  PubMed  Google Scholar 

  46. Ansari, D.; Tingstedt, B.; Andersson, B.; Holmquist, F.; Sturesson, C.; Williamsson, C.; Sasor, A.; Borg, D.; Bauden, M.; Andersson, R. Pancreatic cancer: Yesterday, today and tomorrow. Future Oncol. 2016, 12, 1929–1946.

    Article  CAS  PubMed  Google Scholar 

  47. Ma, Y.; Mou, Q. B.; Zhu, L. J.; Su, Y.; Jin, X.; Feng, J.; Yan, D. Y.; Zhu, X. Y.; Zhang, C. Polygemcitabine nanogels with accelerated drug activation for cancer therapy. Chem. Commun. 2019, 55, 6603–6606.

    Article  CAS  Google Scholar 

  48. Mini, E.; Nobili, S.; Caciagli, B.; Landini, I.; Mazzei, T. Cellular Pharmacology of gemcitabine. Ann. Oncol. 2006, 17, v7–v12.

    Article  PubMed  Google Scholar 

  49. Massa, S.; Xavier, C.; De Vos, J.; Caveliers, V.; Lahoutte, T.; Muyldermans, S.; Devoogdt, N. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug. Chem. 2014, 25, 979–988.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFA0902601), the National Natural Science Foundation of China (Nos. 52225302, 52103265, and 22175116), the Shanghai Sailing Program (No. 21YF1434300), the Natural Science Foundation of Shanghai (No. 23ZR1448000), and the Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University (No. 21TQ1400219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Zhang, Q., Guo, Y. et al. EGFR-targeted and gemcitabine-incorporated chemogene for combinatorial pancreatic cancer treatment. Nano Res. 17, 848–857 (2024). https://doi.org/10.1007/s12274-023-6245-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6245-2

Keywords

Navigation