Skip to main content
Log in

Cellular vesicles expressing PD-1-blocking scFv reinvigorate T cell immunity against cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cancer cells aberrantly express immunosuppressive checkpoint ligands and produce certain metabolites that lead to T cell exhaustion. Immune checkpoint blockade (ICB) therapy that reinvigorates exhausted T cells have achieved impressive response in clinical cancer treatment. However, the limited clinical response rate and off-tumor toxicities restrict ICB therapy. Herein, cellular vesicles displaying anti-programmed cell death-1 (PD-1) single-chain variable fragment antibody (aPD-1-scFv) were prepared to reinvigorate T cell immunity to counteract cancer. The nanovesicles displaying aPD-1-scFv (aPD-1-scFv NVs) could enhance the anti-tumor activation of T cells through PD-1 blockade. Furthermore, NVs loading the A2a adenosine receptor (A2aR) antagonist CPI-444 assisted T cells to antagonize adenosine, an immunosuppressive metabolite produced by cancer cells. Hence, CPI-444 loaded aPD-1-scFv NVs could intensively increase the density and activity of tumor infiltrating T cells, directly restraining tumor progress and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharpe, A. H.; Wherry, E. J.; Ahmed, R.; Freeman, G. J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 2007, 8, 239–245.

    Article  CAS  Google Scholar 

  2. Keir, M. E.; Butte, M. J.; Freeman, G. J.; Sharpe, A. H. Pd-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704.

    Article  CAS  Google Scholar 

  3. Sun, C.; Mezzadra, R.; Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 2018, 48, 434–452.

    Article  CAS  Google Scholar 

  4. Sanmamed, M. F.; Chen, L. A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell 2018, 175, 313–326.

    Article  CAS  Google Scholar 

  5. Ganesh, K.; Stadler, Z. K.; Cercek, A.; Mendelsohn, R. B.; Shia, J.; Segal, N. H.; Diaz, L. A. Jr. Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 361–375.

    Article  Google Scholar 

  6. Schadendorf, D.; Fisher, D. E.; Garbe, C.; Gershenwald, J. E.; Grob, J. J.; Halpern, A.; Herlyn, M.; Marchetti, M. A.; McArthur, G.; Ribas, A. et al. Melanoma. Nat. Rev. Dis. Primers 2015, 1, 15003.

    Article  Google Scholar 

  7. Preusser, M.; Lim, M.; Hafler, D. A.; Reardon, D. A.; Sampson, J. H. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat. Rev. Neurol. 2015, 11, 504–514.

    Article  CAS  Google Scholar 

  8. O’Donnell, J. S.; Teng, M. W. L.; Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 2019, 16, 151–167.

    Article  CAS  Google Scholar 

  9. Kalbasi, A.; Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020, 20, 25–39.

    Article  CAS  Google Scholar 

  10. Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (time) for effective therapy. Nat. Med. 2018, 24, 541–550.

    Article  CAS  Google Scholar 

  11. Chen, Q. J.; Liu, L. S.; Lu, Y. F.; Chen, X. L.; Zhang, Y. J.; Zhou, W. X.; Guo, Q.; Li, C.; Zhang, Y. W.; Zhang, Y. et al. Tumor microenvironment-triggered aggregated magnetic nanoparticles for reinforced image-guided immunogenic chemotherapy. Adv. Sci. 2019, 6, 1802134.

    Article  CAS  Google Scholar 

  12. Togashi, Y.; Shitara, K.; Nishikawa, H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat. Rev. Clin. Oncol. 2019, 16, 356–371.

    Article  CAS  Google Scholar 

  13. Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416.

    Article  CAS  Google Scholar 

  14. Gabrilovich, D. I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174.

    Article  CAS  Google Scholar 

  15. Vijayan, D.; Young, A.; Teng, M. W. L.; Smyth, M. J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 2017, 17, 709–724.

    Article  CAS  Google Scholar 

  16. Decking, U. K. M.; Schlieper, G.; Kroll, K.; Schrader, J. Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ. Res. 1997, 81, 154–164.

    Article  CAS  Google Scholar 

  17. Willingham, S. B.; Ho, P. Y.; Hotson, A.; Hill, C.; Piccione, E. C.; Hsieh, J.; Liu, L.; Buggy, J. J.; McCaffery, I.; Miller, R. A. A2AR antagonism with CPI-444 induces antitumor responses and augments efficacy to anti-PD-(L)1 and anti-CTLA-4 in preclinical models. Cancer Immunol. Res. 2018, 6, 1136–1149.

    Article  CAS  Google Scholar 

  18. Ma, S. R.; Deng, W. W.; Liu, J. F.; Mao, L.; Yu, G. T.; Bu, L. L.; Kulkarni, A. B.; Zhang, W. F.; Sun, Z. J. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Mol. Cancer 2017, 16, 99.

    Article  CAS  Google Scholar 

  19. Yang, J. X.; Wang, C. H.; Shi, S.; Dong, C. Y. Nanotechnologies for enhancing cancer immunotherapy. Nano Res. 2020, 13, 2595–2616.

    Article  CAS  Google Scholar 

  20. Ramos-Casals, M.; Brahmer, J. R.; Callahan, M. K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M. A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M. E. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers 2020, 6, 38.

    Article  Google Scholar 

  21. Khoja, L.; Day, D.; Chen, T. W. W.; Siu, L. L.; Hansen, A. R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: A systematic review. Ann. Oncol. 2017, 28, 2377–2385.

    Article  CAS  Google Scholar 

  22. Topalian, S. L.; Taube, J. M.; Anders, R. A.; Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 2016, 16, 275–287.

    Article  CAS  Google Scholar 

  23. Postow, M. A.; Sidlow, R.; Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 2018, 378, 158–168.

    Article  CAS  Google Scholar 

  24. Adams, J. L.; Smothers, J.; Srinivasan, R.; Hoos, A. Big opportunities for small molecules in immuno-oncology. Nat. Rev. Drug Discov. 2015, 14, 603–622.

    Article  CAS  Google Scholar 

  25. Osipov, A.; Saung, M. T.; Zheng, L.; Murphy, A. G. Small molecule immunomodulation: The tumor microenvironment and overcoming immune escape. J. Immunother. Cancer 2019, 7, 224.

    Article  Google Scholar 

  26. Yang, X.; Gao, L.; Guo, Q.; Li, Y. J.; Ma, Y.; Yang, J.; Gong, C. Y.; Yi, C. Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy. Nano Res. 2020, 13, 2579–2594.

    Article  CAS  Google Scholar 

  27. Li, J. Y.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071.

    Article  CAS  Google Scholar 

  28. Suthiwangcharoen, N.; Li, T.; Li, K.; Thompson, P.; You, S. J.; Wang, Q. M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles. Nano Res. 2011, 4, 483–493.

    Article  CAS  Google Scholar 

  29. Ingato, D.; Edson, J. A.; Zakharian, M.; Kwon, Y. J. Cancer cell-derived, drug-loaded nanovesicles induced by sulfhydryl-blocking for effective and safe cancer therapy. ACS Nano 2018, 12, 9568–9577.

    Article  CAS  Google Scholar 

  30. Wang, H. J.; Bremner, D. H.; Wu, K. H.; Gong, X. R.; Fan, Q.; Xie, X. T.; Zhang, H. M.; Wu, J. Z.; Zhu, L. M. Platelet membrane biomimetic bufalin-loaded hollow MnO2 nanoparticles for MRI-guided chemo-chemodynamic combined therapy of cancer. Chem. Eng. J. 2020, 382, 122848.

    Article  CAS  Google Scholar 

  31. El Andaloussi, S.; Mäger, I.; Breakefield, X. O.; Wood, M. J. A. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357.

    Article  CAS  Google Scholar 

  32. Liu, C.; Feng, Q.; Sun, J. S. Lipid nanovesicles by microfluidics: Manipulation, synthesis, and drug delivery. Adv. Mater. 2019, 31, 1804788.

    Article  CAS  Google Scholar 

  33. Xie, F.; Zhou, X. X.; Fang, M. Y.; Li, H. Y.; Tu, Y. F.; Zhang, L.; Zhou, F. F. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv. Sci. 2019, 6, 1901779.

    Article  CAS  Google Scholar 

  34. Wang, X. Y.; Lu, Z. G.; Zhang, J. M.; Zhao, B. C.; Wang, J. Z.; Shen, J.; Niu, Y. W.; Xiao, Z. B.; Liu, G. Y.; Hao, J. F. et al. Cationic nano-fragrance with sustained release property for neuroregulation. J. Biomed. Nanotechnol. 2020, 16, 344–351.

    Article  CAS  Google Scholar 

  35. Lu, M.; Huang, Y. Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials 2020, 242, 119925.

    Article  CAS  Google Scholar 

  36. Zhang, X. D.; Wang, C.; Wang, J. Q.; Hu, Q. Y.; Langworthy, B.; Ye, Y. Q.; Sun, W. J.; Lin, J.; Wang, T. F.; Fine, J. et al. PD-1 blockade cellular vesicles for cancer immunotherapy. Adv. Mater. 2018, 30, 1707112.

    Article  CAS  Google Scholar 

  37. Théry, C.; Ostrowski, M.; Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 2009, 9, 581–593.

    Article  CAS  Google Scholar 

  38. Lv, P.; Liu, X.; Chen, X. M.; Liu, C.; Zhang, Y.; Chu, C. C.; Wang, J. Q.; Wang, X. Y.; Chen, X. Y.; Liu, G. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: A versatile platform for cancer virotherapy. Nano Lett. 2019, 19, 2993–3001.

    Article  CAS  Google Scholar 

  39. Zhang, P. F.; Liu, G.; Chen, X. Y. Nanobiotechnology: Cell membrane-based delivery systems. Nano Today 2017, 13, 7–9.

    Article  CAS  Google Scholar 

  40. Jang, S. C.; Kim, O. Y.; Yoon, C. M.; Choi, D. S.; Roh, T. Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y. K.; Gho, Y. S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013, 7, 7698–7710.

    Article  CAS  Google Scholar 

  41. Zhang, P. F.; Zhang, L.; Qin, Z. N.; Hua, S. H.; Guo, Z. D.; Chu, C. C.; Lin, H. R.; Zhang, Y.; Li, W. G.; Zhang, X. Z. et al. Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv. Mater. 2018, 30, 1705350.

    Article  CAS  Google Scholar 

  42. Liu, X.; Liu, C.; Zheng, Z. Z.; Chen, S. Y.; Pang, X.; Xiang, X. C.; Tang, J. X.; Ren, E.; Chen, Y. Z.; You, M. et al. Vesicular antibodies: A bioactive multifunctional combination platform for targeted therapeutic delivery and cancer immunotherapy. Adv. Mater. 2019, 31, 1808294.

    Article  CAS  Google Scholar 

  43. Li, L. Y.; Miao, Q. W.; Meng, F. Q.; Li, B. Q.; Xue, T. Y.; Fang, T. L.; Zhang, Z. R.; Zhang, J. X.; Ye, X. Y.; Kang, Y. et al. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy. Theranostics 2021, 11, 6033–6043.

    Article  CAS  Google Scholar 

  44. Zhang, X. D.; Kang, Y.; Wang, J. Q.; Yan, J. J.; Chen, Q.; Cheng, H.; Huang, P.; Gu, Z. Engineered PD-Ll-expressing platelets reverse new-onset type 1 diabetes. Adv. Mater. 2020, 32, 1907692.

    Article  CAS  Google Scholar 

  45. Tee, J. K.; Yip, L. X.; Tan, E. S.; Santitewagun, S.; Prasath, A.; Ke, P. C.; Ho, H. K.; Leong, D. T. Nanoparticles’ interactions with vasculature in diseases. Chem. Soc. Rev. 2019, 48, 5381–5407.

    Article  CAS  Google Scholar 

  46. Thommen, D. S.; Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 2018, 33, 547–562.

    Article  CAS  Google Scholar 

  47. Anderson, K. G.; Stromnes, I. M.; Greenberg, P. D. Obstacles posed by the tumor microenvironment to T cell activity: A case for synergistic therapies. Cancer Cell 2017, 31, 311–325.

    Article  CAS  Google Scholar 

  48. Chen, D. S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330.

    Article  CAS  Google Scholar 

  49. Wei, S. C.; Duffy, C. R.; Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018, 8, 1069–1086.

    Article  Google Scholar 

  50. Daillère, R.; Vétizou, M.; Waldschmitt, N.; Yamazaki, T.; Isnard, C.; Poirier-Colame, V.; Duong, C. P. M.; Flament, C.; Lepage, P.; Roberti, M. P. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 2016, 45, 931–943.

    Article  CAS  Google Scholar 

  51. Davis, D. M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol. 2007, 7, 238–243.

    Article  CAS  Google Scholar 

  52. Zhao, P.; Wang, P.; Dong, S. Y.; Zhou, Z. M.; Cao, Y. G.; Yagita, H.; He, X.; Zheng, S. G.; Fisher, S. J.; Fujinami, R. S. et al. Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat. Biomed. Eng. 2019, 3, 292–305.

    Article  CAS  Google Scholar 

  53. Rafiq, S.; Yeku, O. O.; Jackson, H. J.; Purdon, T. J.; Van Leeuwen, D. G.; Drakes, D. J.; Song, M.; Miele, M. M.; Li, Z. N.; Wang, P. et al. Targeted delivery of a PD-1-blocking scFV by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 2018, 36, 847–856.

    Article  CAS  Google Scholar 

  54. Noy, R.; Pollard, J. W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61.

    Article  CAS  Google Scholar 

  55. Qian, B. Z.; Li, J. F.; Zhang, H.; Kitamura, T.; Zhang, J. H.; Campion, L. R.; Kaiser, E. A.; Snyder, L. A.; Pollard, J. W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222–225.

    Article  CAS  Google Scholar 

  56. Xia, Y. Q.; Rao, L.; Yao, H. M.; Wang, Z. L.; Ning, P. B.; Chen, X. Y. Engineering macrophages for cancer immunotherapy and drug delivery. Adv. Mater. 2020, 32, 2002054.

    Article  CAS  Google Scholar 

  57. Xiao, T. T.; Hu, W.; Fan, Y.; Shen, M. W.; Shi, X. Y. Macrophage-mediated tumor homing of hyaluronic acid nanogels loaded with polypyrrole and anticancer drug for targeted combinational photothermo-chemotherapy. Theranostics 2021, 11, 7057–7071.

    Article  CAS  Google Scholar 

  58. McLane, L. M.; Abdel-Hakeem, M. S.; Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 2019, 37, 457–495.

    Article  CAS  Google Scholar 

  59. Farhood, B.; Najafi, M.; Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Phys. 2019, 234, 8509–8521.

    Article  CAS  Google Scholar 

  60. Watts, T. H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 2005, 23, 23–68.

    Article  CAS  Google Scholar 

  61. Croft, M. Co-stimulatory members of the TNFR family: Keys to effective t-cell immunity? Nat. Rev. Immunol. 2003, 3, 609–620.

    Article  CAS  Google Scholar 

  62. Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 2009, 9, 271–285.

    Article  CAS  Google Scholar 

  63. Russell, J. H.; Ley, T. J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 2002, 20, 323–370.

    Article  CAS  Google Scholar 

  64. Voskoboinik, I.; Whisstock, J. C.; Trapani, J. A. Perforin and granzymes: Function, dysfunction and human pathology. Nat. Rev. Immunol. 2015, 15, 388–400.

    Article  CAS  Google Scholar 

  65. Sitkovsky, M. V. Lessons from the A2A adenosine receptor antagonist-enabled tumor regression and survival in patients with treatment-refractory renal cell cancer. Cancer Discov. 2020, 10, 16–19.

    Article  CAS  Google Scholar 

  66. Leone, R. D.; Sun, I. M.; Oh, M. H.; Sun, I. H.; Wen, J. Y.; Englert, J.; Powell, J. D. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol., Immunother. 2018, 67, 1271–1284.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 31971268), the Natural Science Foundation of Guangdong Province (No. 2020A1515010802), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110166), Shenzhen Excellent Science and Technology Innovation Talent Training Project (Excellent Youth Project, No. RCYX20200714114643121), Science, Technology & Innovation Commission of Shenzhen Municipality (No. JCYJ20200109142610136), Basic Research Program of Shenzhen (No. JCYJ20180507181654186), Health System Scientific Research Project of Shenzhen Guangming District Science and Innovation Bureau (Nos. 2020R01073, and 2020R01061), Special Fund for Economic Development of Guangming District, Shenzhen (No. 2021R01128), University of Chinese Academy of Sciences—Shenzhen Hospital Research Funding (No. HRF-2020004), the Fundamental Research Funds for the Central Universities (No. 19lgzd45), Disciplinary Construction of Posts of Zhujiang Scholars (No. 4SG21005G), and Discipline Construction Project of Guangdong Medical University (No. 4SG21008G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanqiang Meng, Xin Liang or Xudong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, T., Zhang, Z., Fang, T. et al. Cellular vesicles expressing PD-1-blocking scFv reinvigorate T cell immunity against cancer. Nano Res. 15, 5295–5304 (2022). https://doi.org/10.1007/s12274-022-4182-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4182-0

Keywords

Navigation