Skip to main content
Log in

Unveiling strain-enhanced moiré exciton localization in twisted van der Waals homostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Moiré superlattices, arising from the controlled twisting of van der Waals homostructures at specific angles, have emerged as a promising platform for quantum emission applications. Concurrently, the manipulation of strain provides a versatile strategy to finely adjust electronic band structures, enhance exciton luminescence efficiency, and establish a robust foundation for twodimensional quantum light sources. However, the intricate interplay between strain and moiré potential remains partially unexplored. Here, we introduce a meticulously designed fusion of strain engineering and the twisted 2L-WSe2/2L-WSe2 homobilayers, resulting in the precise localization of moiré excitons. Employing low-temperature photoluminescence spectroscopy, we unveil the emergence of highly localized moiré-enhanced emission, characterized by the presence of multiple distinct emission lines. Furthermore, our investigation demonstrates the effective regulation of moiré potential depths through strain engineering, with the potential depths of strained and unstrained regions differing by 91%. By combining both experimental and theoretical approaches, our study elucidates the complex relationship between strain and moiré potential, thereby opening avenues for generating strain-induced moiré exciton single-photon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ko, E. K.; Hahn, S.; Sohn, C.; Lee, S.; Lee, S. S. B.; Sohn, B.; Kim, J. R.; Son, J.; Song, J.; Kim, Y. et al. Tuning orbital-selective phase transitions in a two-dimensional Hund’s correlated system. Nat. Commun. 2023, 14, 3572.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cao, M.; Zhang, C.; Cai, Z.; Xiao, C. C.; Chen, X. S.; Yi, K. Y.; Yang, Y. G.; Lu, Y. H.; Wei, D. C. Enhanced photoelectrical response of thermodynamically epitaxial organic crystals at the two-dimensional limit. Nat. Commun. 2019, 10, 756.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zheng, H. H.; Wu, B.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, C. T.; Wang, J. T.; Pan, A. L.; Liu, Y. P. Localizationenhanced moiré exciton in twisted transition metal dichalcogenide heterotrilayer superlattices. Light Sci. Appl. 2023, 12, 117.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Biscaras, J.; Bergeal, N.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Grilli, M.; Caprara, S.; Lesueur, J. Multiple quantum criticality in a two-dimensional superconductor. Nat. Mater. 2013, 12, 542–548.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Zheng, H. H.; Wu, B.; Wang, C. T.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Duan, J. A.; Liu, Y. P. Exploring the regulatory effect of stacked layers on moiré excitons in twisted WSe2/WSe2/WSe2 homotrilayer. Nano Res. 2023, 16, 10573–10579.

    Article  ADS  CAS  Google Scholar 

  6. Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Effect of layered-coupling in twisted WSe2 moiré superlattices. Nano Res. 2023, 16, 3435–3442.

    Article  ADS  Google Scholar 

  7. Kang, K. F.; Zhao, W. J.; Zeng, Y. H.; Watanabe, K.; Taniguchi, T.; Shan, J.; Mak, K. F. Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices. Nat. Nanotechnol. 2023, 18, 861–866.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Liu, Y. P. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 2023, 16, 3429–3434.

    Article  ADS  CAS  Google Scholar 

  9. Naik, M. H.; Regan, E. C.; Zhang, Z. C.; Chan, Y. H.; Li, Z. L.; Wang, D. Q.; Yoon, Y.; Ong, C. S.; Zhao, W. Y.; Zhao, S. H. et al. Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature 2022, 609, 52–57.

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

    Article  ADS  CAS  Google Scholar 

  11. Yu, Y.; Zhang, K. D.; Parks, H.; Babar, M.; Carr, S.; Craig, I. M.; Van Winkle, M.; Lyssenko, A.; Taniguchi, T.; Watanabe, K. et al. Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nat. Chem. 2022, 14, 267–273.

    Article  CAS  PubMed  Google Scholar 

  12. Li, E.; Hu, J. X.; Feng, X. M.; Zhou, Z. S.; An, L. H.; Law, K. T.; Wang, N.; Lin, N. Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2. Nat. Commun. 2021, 12, 5601.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Zeng, Y. J.; Chen, K. Q.; Liu, Z. W.; Chen, S. L.; Pan, A. L. et al. Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light Sci. Appl. 2022, 11, 166.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Li, H. Y.; Li, S. W.; Naik, M. H.; Xie, J. X.; Li, X. Y.; Wang, J. Y.; Regan, E.; Wang, D. Q.; Zhao, W. Y.; Zhao, S. H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 2021, 20, 945–950.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Lian, Z.; Chen, D. X.; Meng, Y. Z.; Chen, X. T.; Su, Y.; Banerjee, R.; Taniguchi, T.; Watanabe, K.; Tongay, S.; Zhang, C. W. et al. Exciton superposition across moiré states in a semiconducting moiré superlattice. Nat. Commun. 2023, 14, 5042.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahdikhanysarvejahany, F.; Shanks, D. N.; Klein, M.; Wang, Q.; Koehler, M. R.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Monti, O. L. A.; Leroy, B. J. et al. Localized interlayer excitons in MoSe2-WSe2 heterostructures without a moiré potential. Nat. Commun. 2022, 13, 5354.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, D. X.; Lian, Z.; Huang, X.; Su, Y.; Rashetnia, M.; Yan, L.; Blei, M.; Taniguchi, T.; Watanabe, K.; Tongay, S. et al. Tuning moiré excitons and correlated electronic states through layer degree of freedom. Nat. Commun. 2022, 13, 4810.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lian, Z.; Chen, D. X.; Ma, L.; Meng, Y. Z.; Su, Y.; Yan, L.; Huang, X.; Wu, Q. R.; Chen, X. Y.; Blei, M. et al. Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice. Nat. Commun. 2023, 14, 4604.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Regan, E. C.; Wang, D. Q.; Jin, C. H.; Bakti Utama, M. I.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 2020, 579, 359–363.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Li, T. X.; Jiang, S. W.; Li, L. Z.; Zhang, Y.; Kang, K. F.; Zhu, J. C.; Watanabe, K.; Taniguchi, T.; Chowdhury, D.; Fu, L. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 2021, 597, 350–354.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Zhang, C. X.; Zhu, T. C.; Soejima, T.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Zettl, A.; Wang, F.; Zaletel, M. P.; Crommie, M. F. Local spectroscopy of a gate-switchable moiré quantum anomalous Hall insulator. Nat. Commun. 2023, 14, 3595.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang, J.; Xiao, D.; Wang, F.; Shin, J. H.; Andreoli, D.; Zhang, J. X.; Xiao, R.; Zhao, Y. F.; Kayyalha, M.; Zhang, L. et al. Concurrence of quantum anomalous Hall and topological Hall effects in magnetic topological insulator sandwich heterostructures. Nat. Mater. 2020, 19, 732–737.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Díez-Mérida, J.; Díez-Carlón, A.; Yang, S. Y.; Xie, Y. M.; Gao, X. J.; Senior, J.; Watanabe, K.; Taniguchi, T.; Lu, X.; Higginbotham, A. P. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 2023, 14, 2396.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Lee, G. H.; Huang, K. F.; Efetov, D. K.; Wei, D. S.; Hart, S.; Taniguchi, T.; Watanabe, K.; Yacoby, A.; Kim, P. Inducing superconducting correlation in quantum Hall edge states. Nat. Phys. 2017, 13, 693–698.

    Article  CAS  Google Scholar 

  25. Yang, F.; Feng, J.; Chen, J. X.; Ye, Z. Y.; Chen, J. H.; Hensley, D. K.; Yin, Y. D. Engineering surface strain for site-selective island growth of Au on anisotropic Au nanostructures. Nano Res. 2023, 16, 5873–5879.

    Article  ADS  CAS  Google Scholar 

  26. Li, X. Z.; Jones, A. C.; Choi, J.; Zhao, H.; Chandrasekaran, V.; Pettes, M. T.; Piryatinski, A.; Tschudin, M. A.; Reiser, P.; Broadway, D. A. et al. Proximity-induced chiral quantum light generation in strain-engineered WSe2/NiPS3 heterostructures. Nat. Mater., in press, https://doi.org/10.1038/s41563-023-01645-7.

  27. Cheng, F. H.; Huang, J. W.; Qin, F.; Zhou, L.; Dai, X. T.; Bi, X. Y.; Zhang, C. R.; Li, Z. Y.; Tang, M.; Qiu, C. Y. et al. Strain engineering of anisotropic light-matter interactions in onedimensional P-P chain of SiP2. Nano Res. 2022, 15, 7378–7383.

    Article  ADS  CAS  Google Scholar 

  28. Branny, A.; Kumar, S.; Proux, R.; Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 2017, 8, 15053.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, B. S.; Liao, Q. L.; Zhang, X. K.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z.; Zhang, Z.; Zhang, Y. Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 2019, 13, 9057–9066.

    Article  CAS  PubMed  Google Scholar 

  30. Lu, D. L.; Chen, Y.; Kong, L. G.; Luo, C. B.; Lu, Z. Y.; Tao, Q. Y.; Song, W. J.; Ma, L. K.; Li, Z. W.; Li, W. Y. et al. Strain-Plasmonic coupled broadband photodetector based on monolayer MoS2. Small 2022, 18, 2107104.

    Article  CAS  Google Scholar 

  31. Bai, Y. S.; Zhou, L.; Wang, J.; Wu, W. J.; Mcgilly, L. J.; Halbertal, D.; Lo, C. F. B.; Liu, F.; Ardelean, J.; Rivera, P. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 2020, 19, 1068–1073.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Shabani, S.; Halbertal, D.; Wu, W. J.; Chen, M. X.; Liu, S.; Hone, J.; Yao, W.; Basov, D. N.; Zhu, X. Y.; Pasupathy, A. N. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 2021, 17, 720–725.

    Article  CAS  Google Scholar 

  33. Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Yu, H. Y.; Wang, Y.; Tong, Q. J.; Xu, X. D.; Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 2015, 115, 187002.

    Article  ADS  PubMed  Google Scholar 

  35. Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Mahdikhanysarvejahany, F.; Shanks, D. N.; Muccianti, C.; Badada, B. H.; Idi, I.; Alfrey, A.; Raglow, S.; Koehler, M. R.; Mandrus, D. G.; Taniguchi, T. et al. Temperature dependent moiré trapping of interlayer excitons in MoSe2-WSe2 heterostructures. npj 2D Mater. Appl. 2021, 5, 67.

    Article  CAS  Google Scholar 

  37. Fang, Y. T.; Wang, L.; Sun, Q. L.; Lu, T. P.; Deng, Z.; Ma, Z. G.; Jiang, Y.; Jia, H. Q.; Wang, W. X.; Zhou, J. M. et al. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, Y.; Kim, H.; Zhang, W. J.; Watanabe, K.; Taniguchi, T.; Gao, Y. L.; Maruyama, M.; Okada, S.; Shinokita, K.; Matsuda, K. Magnon-coupled intralayer moiré trion in monolayer semiconductor-antiferromagnet heterostructures. Adv. Mater. 2022, 34, e2200301.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the diverse array of funding sources that have generously supported this research endeavor. Notably, the National Natural Science Foundation of China (No. 52373311), the Science Talent Program of China, the Hunan Provincial Science Fund for Distinguished Young Scholars (No. 2020JJ2059), the Hunan Province Key Research and Development Project (No. 2019GK2233), and the Youth Innovation Team (No. 2019012) of Central South University (CSU) have played an essential role in facilitating the success of this study. Furthermore, the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20190806144418859), the Key Program of the Science and Technology Department of Hunan Province (Nos. 2019XK2001 and 2020XK2001), and the National Natural Science Foundation of China (Nos. 62090035 and U19A2090) have also made significant contributions to the advancement of this work. The support provided by the High-Performance Complex Manufacturing Key State Lab Project at CSU (No. ZZYJKT2020-12) has been of immeasurable value, greatly expediting the research process. Acknowledgment is also extended to the Australian Research Council (ARC Discovery Project, DP180102976) for its pivotal role in driving forward this research agenda. Additionally, J. T. W. extends gratitude for the support received from the National Natural Science Foundation of China (Nos. 92263202 and 11974387), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB33000000), and the National Key Research and Development Program of China (No. 2020YFA0711502). The authors also wish to convey their deep appreciation to the Beijing Super Cloud Computing Center (BSCC, http://www.blsc.cn) for granting access to high-performance computing (HPC) resources, which have been instrumental in yielding the research outcomes detailed in this paper. Finally, the authors hold profound gratitude for the support of the Postdoctoral Science Foundation of China (No. 2022M713546), a vital contribution that has substantially propelled the advancement of this research endeavor. This work was supported in part by the High-Performance Computing Center of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H.R., Zheng, H., Wu, B. et al. Unveiling strain-enhanced moiré exciton localization in twisted van der Waals homostructures. Nano Res. 17, 3245–3252 (2024). https://doi.org/10.1007/s12274-023-6205-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6205-x

Keywords

Navigation