Skip to main content
Log in

Stably doped graphene transparent electrode with improved light-extraction for efficient flexible organic light-emitting diodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene-based flexible transparent electrodes (FTEs) are promising candidate materials for developing next-generation flexible organic light-emitting diodes (OLEDs). However, the quest for high-efficiency OLEDs is hindered by the low light-extraction and charge injection efficiencies of graphene electrode. Here, we combine the frustrated Lewis pair doping with nanostructure engineering to obtain high-performance graphene FTE. A p-type dopant aci-nitromethane-tris(pentafluorophenyl) borane (ANBCF) was synthesized and deposited on graphene FTE to form an aperiodic nanostructure, which not only improves the light-extraction but also stably p-dopes graphene to enhance its hole injection. The use of ANBCF-doped graphene as the anode enables high-efficiency flexible green OLEDs with external quantum efficiency (EQE) and power efficiency (PE) out-performing most flexible graphene OLEDs of comparable structure. This study provides a simple and effective pathway to fabricate highperformance graphene FTEs for efficient flexible OLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, D. D.; Huang, T. Y.; Duan, L. Emerging self-emissive technologies for flexible displays. Adv. Mater. 2020, 32, 1902391.

    Article  CAS  Google Scholar 

  2. Adetayo, A. E.; Ahmed, T. N.; Zakhidov, A.; Beall, G. W. Improvements of organic light-emitting diodes using graphene as an emerging and efficient transparent conducting electrode material. Adv. Opt. Mater. 2021, 9, 2002102.

    Article  CAS  Google Scholar 

  3. Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 2012, 6, 105–110.

    Article  CAS  Google Scholar 

  4. Li, N.; Oida, S.; Tulevski, G. S.; Han, S. J.; Hannon, J. B.; Sadana, D. K.; Chen, T. C. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes. Nat. Commun. 2013, 4, 2294.

    Article  Google Scholar 

  5. Han, T. H.; Kwon, S. J.; Li, N. N.; Seo, H. K.; Xu, W. T.; Kim, K. S.; Lee, T. W. Versatile p-type chemical doping to achieve ideal flexible graphene electrodes. Angew. Chem., Int. Edit. 2016, 55, 6197–6201.

    Article  CAS  Google Scholar 

  6. Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes. Nanoscale 2016, 8, 10714–10723.

    Article  CAS  Google Scholar 

  7. Lee, J.; Han, T. H.; Park, M. H.; Jung, D. Y.; Seo, J.; Seo, H. K.; Cho, H.; Kim, E.; Chung, J.; Choi, S. Y. et al. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nat. Commun. 2016, 7, 11791.

    Article  CAS  Google Scholar 

  8. Li, Q. C.; Zhao, Z. F.; Yan, B. M.; Song, X. J.; Zhang, Z. P.; Li, J.; Wu, X. S.; Bian, Z. Q.; Zou, X. L.; Zhang, Y. F. et al. Nickelocene-precursor-facilitated fast growth of graphene/h-BN vertical heterostructures and its applications in OLEDs. Adv. Mater. 2017, 29, 1701325.

    Article  Google Scholar 

  9. Wu, T. L.; Yeh, C. H.; Hsiao, W. T.; Huang, P. Y.; Huang, M. J.; Chiang, Y. H.; Cheng, C. H.; Liu, R. S.; Chiu, P. W. Highperformance organic light-emitting diode with substitutionally boron-doped graphene anode. ACS Appl. Mater. Interfaces 2017, 9, 14998–15004.

    Article  CAS  Google Scholar 

  10. Zhang, Z. K.; Du, J. H.; Zhang, D. D.; Sun, H. D.; Yin, L. C.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 2011, 8, 14560.

    Article  Google Scholar 

  11. Park, I. J.; Kim, T. I.; Yoon, T.; Kang, S. M.; Cho, H.; Cho, N. S.; Lee, J. I.; Kim, T. S.; Choi, S. Y. Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1704435.

    Article  Google Scholar 

  12. Ma, L. P.; Wu, Z. B.; Yin, L. C.; Zhang, D. D.; Dong, S. C.; Zhang, Q.; Chen, M. L.; Ma, W.; Zhang, Z. B.; Du, J. H. et al. Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes. Proc. Natl. Acad. Sci. USA 2020, 117, 25991–25998.

    Article  CAS  Google Scholar 

  13. Zhang, Z. K.; Xia, L. L.; Liu, L. Z.; Chen, Y. W.; Wang, Z. Z.; Wang, W.; Ma, D. G.; Liu, Z. P. Ultra-smooth and robust graphene-based hybrid anode for high-performance flexible organic light-emitting diodes. J. Mater. Chem. C 2021, 9, 2106–2114.

    Article  CAS  Google Scholar 

  14. Gather, M. C.; Reineke, S. Recent advances in light outcoupling from white organic light-emitting diodes. J Photon. Energy 2015, 5, 057607.

    Article  Google Scholar 

  15. Koo, W. H.; Jeong, S. M.; Araoka, F.; Ishikawa, K.; Nishimura, S.; Toyooka, T.; Takezoe, H. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat. Photon. 2010, 4, 222–226.

    Article  CAS  Google Scholar 

  16. Xiang, H. Y.; Li, Y. Q.; Meng, S. S.; Lee, C. S.; Chen, L. S.; Tang, J. X. Extremely efficient transparent flexible organic light-emitting diodes with nanostructured composite electrodes. Adv. Opt. Mater. 2018, 6, 1800831.

    Article  Google Scholar 

  17. Cao, Y.; Wang, N. N.; Tian, H.; Guo, J. S.; Wei, Y. Q.; Chen, H.; Miao, Y. F.; Zou, W.; Pan, K.; He, Y. R. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253.

    Article  CAS  Google Scholar 

  18. Ma, L. P.; Ren, W. C.; Cheng, H. M. Progress in surface charge transfer doping of graphene. Acta Phys. Chim. Sin. 2022, 38, 2012080.

    Google Scholar 

  19. Ownby, P. D. The boron trifluoride nitromethane adduct. J. Solid State Chem. 2004, 177, 466–470.

    Article  CAS  Google Scholar 

  20. DePrince III, A. E.; Mazziotti, D. A. Isomerization of nitrosomethane to formaldoxime: Energies, geometries, and frequencies from the parametric variational two-electron reduced-density-matrix method. J. Chem. Phys. 2010, 133, 034112.

    Article  Google Scholar 

  21. Maksyutenko, P.; Förstel, M.; Crandall, P.; Sun, B. J.; Wu, M. H.; Chang, A. H. H.; Kaiser, R. I. An isomer-specific study of solid nitromethane decomposition pathways-Detection of acinitromethane (H2CNO(OH)) and nitrosomethanol (HOCH2NO) intermediates. Chem. Phys. Lett. 2016, 658, 20–29.

    Article  CAS  Google Scholar 

  22. Tran, S. D.; Tronic, T. A.; Kaminsky, W.; Heinekey, D. M.; Mayer, J. M. Metal-free carbon dioxide reduction and acidic C–H activations using a frustrated Lewis pair. Inorg. Chim. Acta 2011, 369, 126–132.

    Article  CAS  Google Scholar 

  23. Güneş, F.; Shin, H. J.; Biswas, C.; Han, G. H.; Kim, E. S.; Chae, S. J.; Choi, J. Y.; Lee, Y. H. Layer-by-layer doping of few-layer graphene film. ACS Nano 2010, 4, 4595–4600.

    Article  Google Scholar 

  24. Kim, Y. H.; Lee, J.; Kim, W. M.; Fuchs, C.; Hofmann, S.; Chang, H. W.; Gather, M. C.; Müller-Meskamp, L.; Leo, K. We want our photons back: Simple nanostructures for white organic light-emitting diode outcoupling. Adv. Funct. Mater. 2014, 24, 2553–2559.

    Article  CAS  Google Scholar 

  25. Kinoshita, H.; Jeon, I.; Maruyama, M.; Kawahara, K.; Terao, Y.; Ding, D.; Matsumoto, R.; Matsuo, Y.; Okada, S.; Ago, H. Highly conductive and transparent large-area bilayer graphene realized by MoCl5 intercalation. Adv. Mater. 2017, 29, 1702141.

    Article  Google Scholar 

  26. Seo, Y. M.; Cho, H. J.; Jang, H. S.; Jang, W.; Lim, J. Y.; Jang, Y.; Gu, T.; Choi, J. Y.; Whang, D. 2D Doping layer for flexible transparent conducting graphene electrodes with low sheet resistance and high stability. Adv. Electron. Mater. 2018, 4, 1700622.

    Article  Google Scholar 

  27. Kang, J. W.; Jeong, W. I.; Kim, J. J.; Kim, H. K.; Kim, D. G.; Lee, G. H. High-performance flexible organic light-emitting diodes using amorphous indium zinc oxide anode. Electrochem. Solid-State Lett. 2007, 10, J75–J78.

    Article  CAS  Google Scholar 

  28. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  CAS  Google Scholar 

  29. Kwon, K. C.; Choi, K. S.; Kim, S. Y. Increased work function in few-layer graphene sheets via metal chloride doping. Adv. Funct. Mater. 2012, 22, 4724–4731.

    Article  CAS  Google Scholar 

  30. Lee, B. H.; Lee, J. H.; Kahng, Y. H.; Kim, N.; Kim, Y. J.; Lee, J.; Lee, T.; Lee, K. Graphene-conducting polymer hybrid transparent electrodes for efficient organic optoelectronic devices. Adv. Funct. Mater. 2014, 24, 1847–1856.

    Article  CAS  Google Scholar 

  31. Kim, D.; Lee, D.; Lee, Y.; Jeon, D. Y. Work-function engineering of graphene anode by Bis(trifluoromethanesulfonyl)amide doping for efficient polymer light-emitting diodes. Adv. Funct. Mater. 2013, 23, 5049–5055.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Dr. C. S. S. for his experimental assistance. This work was supported by the National Science Foundation of China (Nos. 52272051, 52172057, 52188101 and 52002375), Ministry of Science and Technology of China (No. 2021YFA1200804), Chinese Academy of Sciences (Nos. ZDBS-LYJSC027 and XDB30000000), Postdoctoral Science Foundation of China (Nos. 2020M670812 and 2020TQ0328), Liaoning Revitalization Talents Program (No. XLYC1808013), and Guangdong Basic and Applied Basic Research Foundation (No. 2020B0301030002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencai Ren.

Electronic Supplementary Material

12274_2023_6176_MOESM1_ESM.pdf

Stably doped graphene transparent electrode with improved light-extraction for efficient flexible organic light-emitting diodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, LP., Wu, Z., Yan, Y. et al. Stably doped graphene transparent electrode with improved light-extraction for efficient flexible organic light-emitting diodes. Nano Res. 16, 12788–12793 (2023). https://doi.org/10.1007/s12274-023-6176-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6176-y

Keywords

Navigation