Skip to main content
Log in

Enhanced carrier mobility in MoSe2 by pressure modulation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials hold great potential for the development of next-generation integrated circuits (ICs) at the atomic limit. However, it is still very challenging to build high performance devices. One of the main factors that limit the incorporation of 2D materials into IC technology is their relatively low carrier mobility. Thus, the engineering strategies that focus on optimizing performance continue to emerge. Herein, using a spatiotemporal resolved pump-probe setup, the carrier transport performance and relaxation process of few-layer and bulk MoSe2 under pressure were investigated nondestructively and simultaneously. Our results show that pressure can tune the transport performance effectively. In particular, under pressure regulation, the carrier mobility of the bulk MoSe2 increases by ∼ 4 times; meanwhile, the carrier lifetimes of the samples become shorter. Although the processes almost return to their initial state after the pressure release, it is still surprising to see that the carrier mobilities of few-layer and bulk MoSe2 are still ∼ 1.5 and 2 times enhanced, and carrier lifetimes are still shorter than the initial state. Combined with the Raman spectra under pressure, we consider that it is caused by the enhanced layer coupling and lattice compression. The combination of enhanced mobility and shortened lifetime in MoSe2 under pressure holds great potential for optoelectronic applications under the deep ocean and deep earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    CAS  Google Scholar 

  2. Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539.

    CAS  Google Scholar 

  3. Chen, J. Y.; Tang, W.; Tian, B. B.; Liu, B.; Zhao, X. X.; Liu, Y. P.; Ren, T. H.; Liu, W.; Geng, D. C.; Jeong, H. Y. et al. Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv. Sci. 2016, 3, 1500033.

    Google Scholar 

  4. Zhu, C.; Zhao, X. X.; Wang, X. W.; Chen, J. Q.; Yu, P.; Liu, S.; Zhou, J. D.; Fu, Q. D.; Zeng, Q. S.; He, Y. M. et al. Direct laser patterning of a 2D WSe2 logic circuit. Adv. Funct. Mater. 2021, 31, 2009549.

    CAS  Google Scholar 

  5. Qiao, J.; Wang, S. P.; Wang, Z. M.; He, C.; Zhao, S. Q.; Xiong, X. X.; Wang, S. L.; Zhang, X. X.; Tao, X. T. Ultrasensitive and broadband all-optically controlled THz modulator based on MoTe2/Si van der Waals heterostructure. Adv. Opt. Mater. 2020, 8, 2000160.

    CAS  Google Scholar 

  6. Zheng, W.; Lin, R. C.; Zhang, Z. J.; Huang, F. Vacuum-ultraviolet photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces 2018, 10, 27116–27123.

    CAS  Google Scholar 

  7. Qu, Y.; Wu, J. Y.; Yang, Y. Y.; Zhang, Y. N.; Liang, Y.; El Dirani, H.; Crochemore, R.; Demongodin, P.; Sciancalepore, C.; Grillet, C. et al. Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films. Adv. Opt. Mater. 2020, 8, 2001048.

    CAS  Google Scholar 

  8. Wagner, S.; Yim, C.; McEvoy, N.; Kataria, S.; Yokaribas, V.; Kuc, A.; Pindl, S.; Fritzen, C. P.; Heine, T.; Duesberg, G. S. et al. Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 2018, 18, 3738–3745.

    CAS  Google Scholar 

  9. Li, S. L.; Tsukagoshi, K.; Orgiu, E.; Samori, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 2016, 45, 118–151.

    CAS  Google Scholar 

  10. Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.

    Google Scholar 

  11. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    CAS  Google Scholar 

  12. Wang, F.; Yin, L.; Wang, Z. X.; Xu, K.; Wang, F. M.; Shifa, T. A.; Huang, Y.; Wen, Y.; Jiang, C.; He, J. Strong electrically tunable MoTe2/graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices. Appl. Phys. Lett. 2016, 109, 193111.

    Google Scholar 

  13. Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

    CAS  Google Scholar 

  14. Jena, D.; Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 2007, 98, 136805.

    Google Scholar 

  15. Zhou, C. J.; Wang, X. S.; Raju, S.; Lin, Z. Y.; Villaroman, D.; Huang, B. L.; Chan, H. L. W.; Chan, M. S.; Chai, Y. Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT. Nanoscale 2015, 7, 8695–8700.

    CAS  Google Scholar 

  16. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    CAS  Google Scholar 

  17. Retamal, J. R. D.; Periyanagounder, D.; Ke, J. J.; Tsai, M. L.; He, J. H. Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chem. Sci. 2018, 9, 7727–7745.

    Google Scholar 

  18. Jia, L. N.; Wu, J. Y.; Zhang, Y. N.; Qu, Y.; Jia, B. H.; Chen, Z. G.; Moss, D. J. Fabrication technologies for the on-chip integration of 2D materials. Small Methods 2022, 6, 2101435.

    Google Scholar 

  19. Chi, Z. H.; Zhao, X. M.; Zhang, H. D.; Goncharov, A. F.; Lobanov, S. S.; Kagayama, T.; Sakata, M.; Chen, X. J. Pressure-induced metallization of molybdenum disulfide. Phys. Rev. Lett. 2014, 113, 036802.

    CAS  Google Scholar 

  20. Chi, Z. H.; Chen, X. L.; Yen, F.; Peng, F.; Zhou, Y. H.; Zhu, J. L.; Zhang, Y. J.; Liu, X. D.; Lin, C. L.; Chu, S. Q. et al. Superconductivity in pristine 2Ha-MoS2 at ultrahigh pressure. Phys. Rev. Lett. 2018, 120, 037002.

    CAS  Google Scholar 

  21. Liu, B.; Lin, L.; Gao, Y.; Ma, Y. Z.; Zhou, P. Y.; Han, D. D.; Gao, C. X. Metallization of molybdenum diselenide under nonhydrostatic compression. J. Phys. Chem. C 2021, 125, 5412–5416.

    CAS  Google Scholar 

  22. Fu, X. P.; Li, F. F.; Lin, J. F.; Gong, Y. B.; Huang, X. L.; Huang, Y. P.; Han, B.; Zhou, Q.; Cui, T. Pressure-dependent light emission of charged and neutral excitons in monolayer MoSe2. J. Phys. Chem. Lett. 2017, 5, 3556–3563.

    Google Scholar 

  23. Nayak, A. P.; Pandey, T.; Voiry, D.; Liu, J.; Moran, S. T.; Sharma, A.; Tan, C.; Chen, C. H.; Li, L. J.; Chhowalla, M. et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett. 2015, 15, 346–353.

    CAS  Google Scholar 

  24. Ma, X. L.; Fu, S. H.; Ding, J. W.; Liu, M.; Bian, A.; Hong, F.; Sun, J. T.; Zhang, X. X.; Yu, X. H.; He, D. W. Robust interlayer exciton in WS2/MoSe2 van der Waals heterostructure under high pressure. Nano Lett. 2021, 21, 8035–8042.

    CAS  Google Scholar 

  25. Li, C. K.; Cheng, W. J.; Zhang, X. Y.; Zhang, P. J.; Zheng, Q. F.; Yan, Z. P.; Han, J.; Dai, G. Y.; Wang, S. M.; Quan, Z. W. et al. Tuning of interlayer interaction in MoS2-WS2 van der Waals heterostructures using hydrostatic pressure. J. Phys. Chem. C. 2023, 127, 7784–7791.

    CAS  Google Scholar 

  26. Zhu, M. Q.; Zhang, Z. N.; Zhang, T.; Liu, D. D.; Zhang, H.; Zhang, Z. X.; Li, Z. L.; Cheng, Y. C.; Huang, W. Exchange between interlayer and intralayer exciton in WSe2/WS2 heterostructure by interlayer coupling engineering. Nano Lett. 2022, 22, 4528–4534.

    CAS  Google Scholar 

  27. Pandey, T.; Nayak, A. P.; Liu, J.; Moran, S. T.; Kim, J. S.; Li, L. J.; Lin, J. F.; Akinwande, D.; Singh, A. K. Pressure-induced charge transfer doping of monolayer graphene/MoS2 heterostructure. Small 2016, 12, 4063–4069.

    CAS  Google Scholar 

  28. Mao, H. K.; Xu, J.; Bell, P. M. Calibration of the ruby pressure gauge to 800-kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673–4676.

    CAS  Google Scholar 

  29. Ceballos, F.; Zhao, H. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene. Adv. Funct. Mater. 2017, 27, 1604509.

    Google Scholar 

  30. Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Böerner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.

    CAS  Google Scholar 

  31. Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

    CAS  Google Scholar 

  32. Nam, D.; Lee, J. U.; Cheong, H. Excitation energy dependent Raman spectrum of MoSe2. Sci. Rep. 2015, 5, 17113.

    CAS  Google Scholar 

  33. Kim, K.; Lee, J. U.; Nam, D.; Cheong, H. Davydov splitting and excitonic resonance effects in Raman spectra of few-layer MoSe2. ACS Nano 2016, 10, 8113–8120.

    CAS  Google Scholar 

  34. Nayak, A. P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C. Q.; Singh, A. K.; Akinwande, D.; Lin, J. F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731.

    CAS  Google Scholar 

  35. Sousa, J. H. A.; Araújo, B. S.; Ferreira, R. S.; San-Miguel, A.; Alencar, R. S.; Souza Filho, A. G. Pressure tuning resonance raman scattering in monolayer, trilayer, and many-layer molybdenum disulfide. ACS Appl. Nano Mater. 2022, 5, 14464–14469.

    Google Scholar 

  36. Cheng, X. R.; Li, Y. Y.; Shang, J. M.; Hu, C. S.; Ren, Y. F.; Liu, M.; Qi, Z. M. Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure. Nano Res. 2018, 11, 855–863.

    CAS  Google Scholar 

  37. Cui, Q. N.; Ceballos, F.; Kumar, N.; Zhao, H. Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano 2014, 5, 2970–2976.

    Google Scholar 

  38. Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended mono layer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072–1080.

    CAS  Google Scholar 

  39. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

    CAS  Google Scholar 

  40. Yu, Y. L.; Yu, Y. F.; Xu, C.; Barrette, A.; Gundogdu, K.; Cao, L. Y. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers. Phys. Rev. B 2016, 93, 201111.

    Google Scholar 

  41. Schmitt-Rink, S.; Chemla, D. S.; Miller, D. A. B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 1985, 32, 6601–6609.

    CAS  Google Scholar 

  42. Liu, S. Y.; Tan, C. W.; He, D. W.; Wang, Y. S.; Peng, H. L.; Zhao, H. Optical properties and photocarrier dynamics of Bi2O2Se monolayer and nanoplates. Adv. Opt. Mater 2020, 5, 1901567.

    Google Scholar 

  43. Nie, Z. G.; Long, R.; Sun, L. F.; Huang, C. C.; Zhang, J.; Xiong, Q. H.; Hewak, D. W.; Shen, Z. X.; Prezhdo, O. V.; Loh, Z. H. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2. ACS Nano 2014, 5, 10931–10940.

    Google Scholar 

  44. Horng, J.; Stroucken, T.; Zhang, L.; Paik, E. Y.; Deng, H.; Koch, S. W. Observation of interlayer excitons in MoSe2 single crystals. Phys. Rev. B 2018, 97, 241404.

    CAS  Google Scholar 

  45. Ceballos, F.; Cui, Q. N.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale 2016, 5, 11681–11688.

    Google Scholar 

  46. Steinleitner, P.; Merkl, P.; Nagler, P.; Mornhinweg, J.; Schüller, C.; Korn, T.; Chernikov, A.; Huber, R. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett. 2017, 17, 1455–1460.

    CAS  Google Scholar 

  47. Wang, H. N.; Zhang, C. J.; Rana, F. Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett. 2015, 15, 8204–8210.

    CAS  Google Scholar 

  48. Li, Q. Y.; Sui, L.; Niu, G. M.; Jiang, J. T.; Zhang, Y. T.; Wu, G. R.; Jin, M. X.; Yuan, K. J. Pressure manipulation of interlayer interactions and ultrafast carrier dynamics in few-layer MoS2. J. Phys. Chem. C 2020, 124, 11183–11192.

    CAS  Google Scholar 

  49. Ci, P.; Chen, Y. B.; Kang, J.; Suzuki, R.; Choe, H. S.; Suh, J.; Ko, C.; Park, T.; Shen, K.; Iwasa, Y. et al. Quantifying van der Waals interactions in layered transition metal dichalcogenides from pressure-enhanced valence band splitting. Nano Lett. 2017, 17, 4982–4988.

    CAS  Google Scholar 

  50. Dou, X. M.; Ding, K.; Jiang, D. S.; Fan, X. F.; Sun, B. Q. Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure. ACS Nano 2016, 10, 1619–1624.

    CAS  Google Scholar 

  51. Wang, H. N.; Zhang, C. J.; Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 2015, 15, 339–345.

    CAS  Google Scholar 

  52. Smith, L. M.; Wake, D. R.; Wolfe, J. P.; Levi, D.; Klein, M. V.; Klem, J.; Henderson, T.; Morkoç, H. Picosecond imaging of photoexcited carriers in quantum wells: Anomalous lateral confinement at high densities. Phys. Rev. B 1988, 38, 5788–5791.

    CAS  Google Scholar 

  53. Yue, S.; Tian, F.; Sui, X.; Mohebinia, M.; Wu, X. X.; Tong, T.; Wang, Z. M.; Wu, B.; Zhang, Q.; Ren, Z. F. et al. High ambipolar mobility in cubic boron arsenide revealed by transient reflectivity microscopy. Science 2022, 377, 433–436.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities+2021RC203, the National Natural Science Foundation of China (Nos. 11974088, 61875236, and 61975007), the Beijing Natural Science Foundation (Nos. Z190006 and 4222073), and the National Key R&D Program of China (Nos. 2021YFA1400300 and 2020YFA0711502). And thanks to the Synergetic Extreme Condition User Facility (SECUF), Chinese Academy of Sciences, for the Diamond anvil cell.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui Yu, Yongsheng Wang or Xiaoxian Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Zhang, H., He, J. et al. Enhanced carrier mobility in MoSe2 by pressure modulation. Nano Res. 16, 12738–12744 (2023). https://doi.org/10.1007/s12274-023-6143-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6143-7

Keywords

Navigation