Skip to main content
Log in

Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Strain engineering provides an important strategy to modulate the optical and electrical properties of semiconductors for improving devices performance with mechanical force or thermal expansion difference. Here, we present the investigation of the local strain distribution over few-layer MoS2 bubbles, by using scanning photoluminescence and Raman spectroscopies. We observe the obvious direct bandgap emissions with strain in the few-layer MoS2 bubble and the strain-induced continuous energy shifts of both resonant excitons and vibrational modes from the edge of the MoS2 bubble to the center (10 µm scale), associated with the oscillations resulted from the optical interference-induced temperature distribution. To understand these results, we perform ab initio simulations to calculate the electronic and vibrational properties of few-layer MoS2 with biaxial tensile strain, based on density functional theory, finding good agreement with the experimental results. Our study suggests that local strain offers a convenient way to continuously tune the physical properties of a few-layer transition metal dichalcogenides (TMDs) semiconductor, and opens up new possibilities for band engineering within the 2D plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, W. S.; Morozov, V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  2. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano2013, 7, 2898–2926.

    Article  CAS  Google Scholar 

  3. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater.2017, 2, 17033.

    Article  CAS  Google Scholar 

  4. Mak, K. F.; Xiao, D.; Shan, J. Light-valley interactions in 2D semiconductors. Nat. Photonics2018, 12, 451–460.

    Article  CAS  Google Scholar 

  5. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics2016, 10, 216–226.

    Article  CAS  Google Scholar 

  6. Wang, H. T.; Yuan, H. T.; Hong, S. S.; Li, Y. B.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev.2015, 44, 2664–2680.

    Article  CAS  Google Scholar 

  7. Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys.2018, 90, 021001.

    Article  CAS  Google Scholar 

  8. Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun.2012, 3, 1011.

    Article  Google Scholar 

  9. Xie, S. E.; Tu, L. J.; Han, Y. M.; Huang, L. J.; Kang, K.; Lao, K. U.; Poddar, P.; Park, C.; Muller, D. A.; DiStasio, R. A. Jr. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science2018, 359, 1131–1136.

    Article  CAS  Google Scholar 

  10. Martella, C.; Mennucci, C.; Lamperti, A.; Cappelluti, E.; de Mongeot, F. B.; Molle, A. Designer shape anisotropy on transition-metal-dichalcogenide nanosheets. Adv. Mater.2018, 30, 1705615.

    Article  Google Scholar 

  11. Zhao, X. X.; Ding, Z. J.; Chen, J. Y.; Dan, J. D.; Poh, S. M.; Fu, W.; Pennycook, S. J.; Zhou, W.; Loh, K. P. Strain modulation by van der Waals coupling in bilayer transition metal dichalcogenide. ACS Nano2018, 12, 1940–1948.

    Article  CAS  Google Scholar 

  12. Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W. Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun.2017, 8, 608.

    Article  Google Scholar 

  13. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano2011, 5, 9703–9709.

    Article  CAS  Google Scholar 

  14. Lloyd, D.; Liu, X. H.; Christopher, J. W.; Cantley, L.; Wadehra, A.; Kim, B. L.; Goldberg, B. B.; Swan, A. K.; Bunch, J. S.; Scott, J. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett.2016, 16, 5836–5841.

    Article  CAS  Google Scholar 

  15. Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett.2014, 14, 4592–4597.

    Article  CAS  Google Scholar 

  16. Franzl, T.; Klar, T. A.; Schietinger, S.; Rogach, A. L.; Feldmann, J. Exciton recycling in graded gap nanocrystal structures. Nano Lett.2004, 4, 1599–1603.

    Article  CAS  Google Scholar 

  17. Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett.2013, 13, 5361–5366.

    Article  CAS  Google Scholar 

  18. Feng, J.; Qian, X. F.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics2012, 6, 866–872.

    Article  CAS  Google Scholar 

  19. Li, H.; Contryman, A. W.; Qian, X. F.; Ardakani, S. M.; Gong, Y. J.; Wang, X. L.; Weisse, J. M.; Lee, C. H.; Zhao, J. H.; Ajayan, P. M. et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun.2015, 6, 7381.

    Article  CAS  Google Scholar 

  20. Branny, A.; Kumar, S.; Proux, R.; Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun.2017, 8, 15053.

    Article  CAS  Google Scholar 

  21. Palacios-Berraquero, C.; Kara, D. M.; Montblanch, A. R. P.; Barbone, M.; Latawiec, P.; Yoon, D.; Ott, A. K.; Loncar, M.; Ferrari, A. C.; Atatüre, M. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun.2017, 8, 15093.

    Article  CAS  Google Scholar 

  22. Sun, J. Y.; Li, X. X.; Yang, J. L. Significantly enhanced charge separation in rippled monolayer graphitic C3N4. ChemCatChem2019, 11, 6252–6257.

    Article  CAS  Google Scholar 

  23. Zhang, C. D.; Li, M. Y.; Tersoff, J.; Han, Y. M.; Su, Y. S.; Li, L. J.; Muller, D. A.; Shih, C. K. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol.2018, 13, 152–158.

    Article  CAS  Google Scholar 

  24. Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett.2007, 91, 063124.

    Article  Google Scholar 

  25. Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett.2010, 96, 213116.

    Article  Google Scholar 

  26. Huang, Y.; Wang, X.; Zhang, X.; Chen, X. J.; Li, B. W.; Wang, B.; Huang, M.; Zhu, C. Y.; Zhang, X. W.; Bacsa, W. S. et al. Raman spectral band oscillations in large graphene bubbles. Phys. Rev. Lett.2018, 120, 186104.

    Article  CAS  Google Scholar 

  27. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett.2013, 13, 3626–3630.

    Article  CAS  Google Scholar 

  28. Steinhoff, A.; Kim, J. H.; Jahnke, F.; Rösner, M.; Kim, D. S.; Lee, C.; Han, G. H.; Jeong, M. S.; Wehling, T. O.; Gies, C. Efficient excitonic photoluminescence in direct and indirect band gap monolayer MoS2. Nano Lett.2015, 15, 6841–6847.

    Article  CAS  Google Scholar 

  29. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater.2012, 22, 1385–1390.

    Article  CAS  Google Scholar 

  30. Wang, Y. L.; Cong, C. X.; Qiu, C. Y.; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small2013, 9, 2857–2861.

    Article  CAS  Google Scholar 

  31. Nayak, A. P.; Pandey, T.; Voiry, D.; Liu, J.; Moran, S. T.; Sharma, A.; Tan, C.; Chen, C. H.; Li, L. J.; Chhowalla, M. et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett.2015, 15, 346–353.

    Article  CAS  Google Scholar 

  32. Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano Lett.2012, 12, 617–621.

    Article  CAS  Google Scholar 

  33. Hu, Z. J.; Bao, Y. J.; Li, Z. W.; Gong, Y. J.; Feng, R.; Xiao, Y. D.; Wu, X. C.; Zhang, Z. H.; Zhu, X.; Ajayan, P. M. et al. Temperature dependent Raman and photoluminescence of vertical WS2/MoS2 monolayer heterostructures. Sci. Bull.2017, 62, 16–21.

    Article  CAS  Google Scholar 

  34. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.1996, 6, 15–50.

    Article  CAS  Google Scholar 

  35. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  36. Liu, Q. H.; Li, L. Z.; Li, Y. F.; Gao, Z. X.; Chen, Z. F.; Lu, J. J. Tuning electronic structure of bilayer MoS2 by vertical electric field: A First-Principles investigation. Phys. Chem. C2012, 116, 21556–21562.

    Article  CAS  Google Scholar 

  37. McCreary, A.; Ghosh, R.; Amani, M.; Wang, J.; Duerloo, K. A. N.; Sharma, A.; Jarvis, K.; Reed, E. J.; Dongare, A. M.; Banerjee, S. K. et al. Effects of uniaxial and biaxial strain on few-layered terrace structures of MoS2 grown by vapor transport. ACS Nano2016, 10, 3186–3197.

    Article  CAS  Google Scholar 

  38. Dong, L.; Dongare, A. M.; Namburu, R. R.; O’Regan, T. P.; Dubey, M. Theoretical study on strain induced variations in electronic properties of 2H-MoS2 bilayer sheets. Appl. Phys. Lett.2014, 104, 053107.

    Article  Google Scholar 

  39. Fichter, W. B. Some solutions for the large deflections of uniformly loaded circular membranes. NASA Tech. Pap.1997, 3658, 1–20.

    Google Scholar 

  40. Sun, Y. W.; Liu, W.; Hernandez, I.; Gonzalez, J.; Rodriguez, F.; Dunstan, D. J.; Humphreys, C. J. 3D strain in 2D materials: To what extent is monolayer graphene graphite? Phys. Rev. Lett.2019, 123, 135501.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2016YFA0200400, 2016YFA0200800, 2016YFA0200603, 2017YFA0204904, 2019YFA0308000, and 2018YFA0704200), the National Natural Science Foundation of China (Nos. 61888102, 11574369, 11674387, 11574368, 11574385, and 11874405), the Key Research Program of Frontier Sciences of CAS (No. QYZDJSSWSLH042), and the Youth Innovation Promotion Association of CAS (No. 2019007). B. L. thanks the Supercomputing Center at USTC, Supercomputing Center of Chinese Academy of Sciences in Tianjin, and Shanghai Supercomputer Center for providing the computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzhi Gu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Li, B., Huang, Y. et al. Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles. Nano Res. 13, 2072–2078 (2020). https://doi.org/10.1007/s12274-020-2809-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2809-6

Keywords

Navigation