Skip to main content
Log in

Stable operation of polymer electrolyte-solid-state batteries via lone-pair electron fillers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to the increasing demand and wide applications of lithium-ion batteries, higher requirements have been placed on the energy density and safety. Polymer solid-state electrolytes have gained significant popularity due to their excellent interface compatibility and safety. However, their applications have been greatly restricted by the high crystallinity at room temperature, which hinders the transport of lithium ions. Herein, we utilize inorganic tubular fillers with abundant lone-pair atoms to reduce the crystallinity of the polyethylene oxide (PEO) solid-state electrolyte membrane and improve its ionic conductivity at room temperature, enabling stable operation of the battery. The tubular lone-pair-rich inorganic fillers play a key role in providing avenues for both internal and external charge transportation. The surface lone-pair electrons facilitate the dissociation and transport of lithium ions, while the internally tubular electron-rich layer attracts ions into the cavities, further enhancing the ion transport. After 100 cycles at room temperature, the lithium battery loaded with this solid-state electrolyte membrane delivers a specific capacity of 141.6 mAh·g−1, which is 51.3% higher compared to the membrane without the fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Che, Y. H.; Hu, X. S.; Lin, X. K.; Guo, J.; Teodorescu, R. Health prognostics for lithium-ion batteries: Mechanisms, methods, and prospects. Energy Environ. Sci. 2023, 16, 338–371.

    Google Scholar 

  2. Xie, J.; Lu, Y. C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499.

    CAS  Google Scholar 

  3. Jiang, M.; Wang, F.; Yang, F.; He, H.; Yang, J.; Zhang, W.; Luo, J. Y.; Zhang, J.; Fu, C. P. Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. Nano Energy 2022, 93, 106793.

    CAS  Google Scholar 

  4. Chen, Y. Q.; Kang, Y. Q.; Zhao, Y.; Wang, L.; Liu, J. L.; Li, Y. X.; Liang, Z.; He, X. M.; Li, X.; Tavajohi, N. et al. A review of lithiumion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99.

    CAS  Google Scholar 

  5. Lan, Y. Q.; Yao, W. J.; He, X. L.; Song, T. Y.; Tang, Y. B. Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage. Angew. Chem., Int. Ed. 2020, 59, 9255–9262.

    CAS  Google Scholar 

  6. Xu, J. J.; Zhang, J. X.; Pollard, T. P.; Li, Q. D.; Tan, S.; Hou, S.; Wan, H. L.; Chen, F.; He, H. X.; Hu, E. Y. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694–700.

    CAS  Google Scholar 

  7. Kim, T.; Song, W. T.; Son, D. Y.; Ono, L. K.; Qi, Y. B. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964.

    CAS  Google Scholar 

  8. Koohi-Fayegh, S.; Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047.

    Google Scholar 

  9. Wang, Y. B.; Meng, P. Y.; Yang, Z. H.; Jiang, M.; Yang, J.; Li, H. X.; Zhang, J.; Sun, B. D.; Fu, C. P. Regulation of atomic Fe-spin state by crystal field and magnetic field for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2023, 62, e202304229.

    CAS  Google Scholar 

  10. Chen, Y.; Wen, K. H.; Chen, T. H.; Zhang, X. J.; Armand, M.; Chen, S. M. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Mater. 2020, 31, 401–433.

    Google Scholar 

  11. Liu, H. B.; Meng, X. H.; Chen, Y.; Zhao, Y.; Guo, X. L.; Ma, T. L. Synthesis and surface engineering of composite anodes by coating thin-layer silicon on carbon cloth for lithium storage with high stability and performance. ACS Appl. Energy Mater. 2021, 4, 6982–6990.

    CAS  Google Scholar 

  12. Zhou, G. M.; Xu, L.; Hu, G. W.; Mai, L. Q.; Cui, Y. Nanowires for electrochemical energy storage. Chem. Rev. 2019, 119, 11042–11109.

    CAS  Google Scholar 

  13. Liu, H. B.; Sun, Q.; Zhang, H. Q.; Cheng, J.; Li, Y. Y.; Zeng, Z.; Zhang, S.; Xu, X.; Ji, F. J.; Li, D. P. et al. The application road of silicon-based anode in lithium-ion batteries: From liquid electrolyte to solid-state electrolyte. Energy Storage Mater. 2023, 55, 244–263.

    Google Scholar 

  14. Sepulveda, N. A.; Jenkins, J. D.; Edington, A.; Mallapragada, D. S.; Lester, R. K. The design space for long-duration energy storage in decarbonized power systems. Nat. Energy 2021, 6, 506–516.

    Google Scholar 

  15. Park, K. H.; Kaup, K.; Assoud, A.; Zhang, Q.; Wu, X. H.; Nazar, L. F. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 2020, 5, 533–539.

    CAS  Google Scholar 

  16. Zhao, Y.; Liu, H. B.; Meng, X. H.; Liu, A. M.; Chen, Y.; Ma, T. L. A cross-linked tin oxide/polymer composite gel electrolyte with adjustable porosity for enhanced sodium ion batteries. Chem. Eng. J. 2022, 431, 133922.

    CAS  Google Scholar 

  17. Pervez, S. A.; Cambaz, M. A.; Thangadurai, V.; Fichtner, M. Interface in solid-state lithium battery: Challenges, progress, and outlook. ACS Appl. Mater. Interfaces 2019, 11, 22029–22050.

    CAS  Google Scholar 

  18. Umeshbabu, E.; Zheng, B. Z.; Yang, Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2019, 2, 199–230.

    CAS  Google Scholar 

  19. Xia, S. X.; Wu, X. S.; Zhang, Z. C.; Cui, Y.; Liu, W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5, 753–785.

    CAS  Google Scholar 

  20. Zeng, Z.; Cheng, J.; Li, Y. Y.; Zhang, H. Q.; Li, D. P.; Liu, H. B.; Ji, F. J.; Sun, Q.; Ci, L. J. Composite cathode for all-solid-state lithium batteries: Progress and perspective. Mater. Today Phys. 2023, 32, 101009.

    CAS  Google Scholar 

  21. Cheng, J.; Hou, G. M.; Chen, Q.; Li, D. P.; Li, K. K.; Yuan, Q. H.; Wang, J. J.; Ci, L. J. Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chem. Eng. J. 2022, 429, 132343.

    CAS  Google Scholar 

  22. Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 2020, 7, 1903088.

    CAS  Google Scholar 

  23. Kim, K. J.; Balaish, M.; Wadaguchi, M.; Kong, L. P.; Rupp, J. L. M. Solid-state Li-metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 2021, 11, 2002689.

    CAS  Google Scholar 

  24. Pham, M. N.; Subramani, R.; Lin, Y. H.; Lee, Y. L.; Jan, J. S.; Chiu, C. C.; Teng, H. Acylamino-functionalized crosslinker to synthesize all-solid-state polymer electrolytes for high-stability lithium batteries. Chem. Eng. J. 2022, 430, 132948.

    CAS  Google Scholar 

  25. Horowitz, Y.; Schmidt, C.; Yoon, D. H.; Riegger, L. M.; Katzenmeier, L.; Bosch, G. M.; Noked, M.; Ein-Eli, Y.; Janek, J.; Zeier, W. G. et al. Between liquid and all solid: A prospect on electrolyte future in lithium-ion batteries for electric vehicles. Energy Technol. 2020, 8, 2000580.

    CAS  Google Scholar 

  26. Murali, A.; Sakar, M.; Priya, S.; Vijayavarman, V.; Pandey, S.; Sai, R.; Katayama, Y.; Kader, M. A.; Ramanujam, K. Insights into the emerging alternative polymer-based electrolytes for all solid-state lithium-ion batteries: A review. Mater. Lett. 2022, 313, 131764.

    CAS  Google Scholar 

  27. Arya, A.; Sharma, A. L. A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: A topical review. J. Mater. Sci. 2020, 55, 6242–6304.

    CAS  Google Scholar 

  28. Xue, Z. G.; He, D.; Xie, X. L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253.

    CAS  Google Scholar 

  29. Schneier, D.; Harpak, N.; Menkin, S.; Davidi, G.; Goor, M.; Mados, E.; Ardel, G.; Patolsky, F.; Golodnitsky, D.; Peled, E. Analysis of scale-up parameters in 3D silicon-nanowire lithium-battery anodes. J. Electrochem. Soc. 2020, 167, 050511.

    CAS  Google Scholar 

  30. Marzantowicz, M.; Krok, F.; Dygas, J. R.; Florjańczyk, Z.; Zygadło-Monikowska, E. The influence of phase segregation on properties of semicrystalline PEO:LiTFSI electrolytes. Solid State Ionics 2008, 179, 1670–1678.

    CAS  Google Scholar 

  31. Dong, D. R.; Zhou, B.; Sun, Y. F.; Zhang, H.; Zhong, G. M.; Dong, Q. Y.; Fu, F.; Qian, H.; Lin, Z. Y.; Lu, D. R. et al. Polymer electrolyte glue: A universal interfacial modification strategy for all-solid-state Li batteries. Nano Lett. 2019, 19, 2343–2349.

    CAS  Google Scholar 

  32. Jeon, Y. M.; Kim, S.; Lee, M.; Lee, W. B.; Park, J. H. Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation. Adv. Energy Mater. 2020, 10, 2003114.

    CAS  Google Scholar 

  33. Cheng, Z. W.; Liu, T.; Zhao, B.; Shen, F.; Jin, H. Y.; Han, X. G. Recent advances in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 2021, 34, 388–416.

    Google Scholar 

  34. Lee, J. Y.; Yu, T. Y.; Chung, P. H.; Lee, W. Y.; Yeh, S. C.; Wu, N. L.; Jeng, R. J. Semi-interpenetrating polymer network electrolytes based on a spiro-twisted benzoxazine for all-solid-state lithium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 2663–2671.

    CAS  Google Scholar 

  35. Zhao, Y. R.; Huang, Z.; Chen, S. J.; Chen, B.; Yang, J.; Zhang, Q.; Ding, F.; Chen, Y. H.; Xu, X. X. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics 2016, 295, 65–71.

    CAS  Google Scholar 

  36. Liu, L. H.; Chu, L. H.; Jiang, B.; Li, M. C. Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries. Solid State Ionics 2019, 331, 89–95.

    CAS  Google Scholar 

  37. Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.

    CAS  Google Scholar 

  38. Li, X. L.; Yang, L.; Shao, D. S.; Luo, K. L.; Liu, L.; Wu, Z. Y.; Luo, Z. G.; Wang, X. Y. Preparation and application of poly(ethylene oxide)-based all solid-state electrolyte with a walnut-like SiO2 as nano-fillers. J. Appl. Polym. Sci. 2020, 137, 48810.

    CAS  Google Scholar 

  39. Judez, X.; Eshetu, G. G.; Li, C. M.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes. Joule 2018, 2, 2208–2224.

    CAS  Google Scholar 

  40. Banitaba, S. N.; Semnani, D.; Rezaei, B.; Ensafi, A. A. Evaluating the electrochemical properties of PEO-based nanofibrous electrolytes incorporated with TiO2 nanofiller applicable in lithium-ion batteries. Polym. Adv. Technol. 2019, 30, 1234–1242.

    CAS  Google Scholar 

  41. Bhute, M. V.; Kondawar, S. B. Electrospun poly(vinylidene fluoride)/cellulose acetate/AgTiO2 nanofibers polymer electrolyte membrane for lithium ion battery. Solid State Ionics 2019, 333, 38–44.

    CAS  Google Scholar 

  42. Masoud, E. M.; El-Bellihi, A. A.; Bayoumy, W. A.; Mohamed, E. A. Polymer composite containing nano magnesium oxide filler and lithiumtriflate salt: An efficient polymer electrolyte for lithium ion batteries application. J. Mol. Liq. 2018, 260, 237–244.

    CAS  Google Scholar 

  43. Masoud, E. M.; El-Bellihi, A. A.; Bayoumy, W. A.; Mousa, M. A. Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO−LiClO4 composite. Mater. Res. Bull. 2013, 48, 1148–1154.

    CAS  Google Scholar 

  44. Liang, H. Y.; Wang, S. H.; Ye, Q.; Zeng, C.; Tong, Z. M.; Ma, Y.; Li, H. Q. Stabilizing the interface of PEO solid electrolyte to lithium metal anode via a g-C3N4 mediator. Chem. Commun. 2022, 58, 10821–10824.

    CAS  Google Scholar 

  45. Sun, Z. J.; Li, Y. H.; Zhang, S. Y.; Shi, L.; Wu, H.; Bu, H. T.; Ding, S. J. g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 2019, 7, 11069–11076.

    CAS  Google Scholar 

  46. Sun, Q.; Li, J.; Yang, M. X.; Wang, S.; Zeng, G. F.; Liu, H. B.; Cheng, J.; Li, D. P.; Wei, Y. R.; Si, P. C. et al. Carbon microstructure dependent Li-ion storage behaviors in SiOx/C anodes. Small 2023, 19, 2300759.

    CAS  Google Scholar 

  47. Wang, X. S.; Zhou, C.; Shi, R.; Liu, Q. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res. 2019, 12, 2385–2389.

    CAS  Google Scholar 

  48. Fina, F.; Callear, S. K.; Carins, G. M.; Irvine, J. T. S. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 2015, 27, 2612–2618.

    CAS  Google Scholar 

  49. Cui, Y. Y.; Liang, X. M.; Chai, J. C.; Cui, Z. L.; Wang, Q. L.; He, W. S.; Liu, X. C.; Liu, Z. H.; Cui, G. L.; Feng, J. W. High performance solid polymer electrolytes for rechargeable batteries: A self-catalyzed strategy toward facile synthesis. Adv. Sci. 2017, 4, 1700174.

    Google Scholar 

  50. Hsu, S. T.; Tran, B. T.; Subramani, R.; Nguyen, H. T. T.; Rajamani, A.; Lee, M. Y.; Hou, S. S.; Lee, Y. L.; Teng, H. Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature. J. Power Sources 2020, 449, 227518.

    CAS  Google Scholar 

  51. Zhang, J. J.; Yue, L. P.; Hu, P.; Liu, Z. H.; Qin, B. S.; Zhang, B.; Wang, Q. F.; Ding, G. L.; Zhang, C. J.; Zhou, X. H. et al. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Sci. Rep. 2014, 4, 6272.

    CAS  Google Scholar 

  52. Li, Y. H.; Sun, Z. J.; Liu, D. Y.; Lu, S. Y.; Li, F.; Gao, G. X.; Zhu, M.; Li, M. T.; Zhang, Y. F.; Bu, H. T. et al. Bacterial cellulose composite solid polymer electrolyte with high tensile strength and lithium dendrite inhibition for long life battery. Energy Environ. Mater. 2021, 4, 434–443.

    CAS  Google Scholar 

  53. Sathya, S.; Pazhaniswamy, S.; Selvin, P. C.; Vengatesan, S.; Stephan, A. M. Physical and interfacial studies on Li0.5La0.5TiO3-incorporated poly(ethylene oxide)-based electrolytes for all-solid-state lithium batteries. Energy Fuels 2021, 35, 13402–13410.

    CAS  Google Scholar 

  54. Wei, J. H.; Zheng, X. W.; Lin, W. T.; Si, Y.; Ji, K. M.; Wang, C. Y.; Chen, M. M. Retarding Li dendrites growth via introducing porous g-C3N4 into polymer electrolytes for solid-state lithium metal batteries. J. Alloys Compd. 2022, 909, 164825.

    CAS  Google Scholar 

  55. Guo, Y. P.; Niu, P.; Liu, Y. Y.; Ouyang, Y.; Li, D.; Zhai, T. Y.; Li, H. Q.; Cui, Y. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes. Adv. Mater. 2019, 31, 1900342.

    Google Scholar 

  56. Liang, J. N.; Sun, Q.; Zhao, Y.; Sun, Y. P.; Wang, C. H.; Li, W. H.; Li, M. S.; Wang, D. W.; Li, X.; Liu, Y. L. et al. Stabilization of all-solid-state Li-S batteries with a polymer-ceramic sandwich electrolyte by atomic layer deposition. J. Mater. Chem. A 2018, 6, 23712–23719.

    CAS  Google Scholar 

  57. Wu, J.; Tian, L. L.; Duan, H. M.; Cheng, Y. H.; Shi, L. Unveiling the working mechanism of g-C3N4 as a protection layer for lithium- and sodium-metal anode. ACS Appl. Mater. Interfaces 2021, 13, 46821–46829.

    CAS  Google Scholar 

  58. Zhu, B. C.; Zhang, L. Y.; Cheng, B.; Yu, J. G. First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl. Catal. B: Environ. 2018, 224, 983–999.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by School Research Startup Expenses of Harbin Institute of Technology (Shenzhen) (Nos. DD29100027 and DD45001022), the National Natural Science Foundation of China (No. 52002094), Shenzhen Science and Technology Program (Nos. JCYJ20210324121411031, JSGG202108021253804014, and RCBS20210706092218040), and the Open Fund of the Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials (No. asem202107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Sun, Jingyu Lu or Lijie Ci.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Sun, Q., Cheng, J. et al. Stable operation of polymer electrolyte-solid-state batteries via lone-pair electron fillers. Nano Res. 16, 12727–12737 (2023). https://doi.org/10.1007/s12274-023-6142-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6142-8

Keywords

Navigation