Skip to main content
Log in

Data-driven rational design of single-atom materials for hydrogen evolution and sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Herein we proposed a data-driven high-throughput principle to screen high-performance single-atom materials for hydrogen evolution reaction (HER) and hydrogen sensing by combing the theoretical computations and a topology-based multi-scale convolution kernel machine learning algorithm. After the rational training by 25 groups of data and prediction of all 168 groups of single-atom materials for HER and sensing, respectively, a high prediction accuracy (> 0.931 R2 score) was achieved by our model. Results show that the promising HER catalysts include Pt atoms in C4 and Sc atoms in C1N3 coordination environment. Moreover, Y atoms in C4 coordination environment and Cd atoms in C2N2-ortho coordination environment were predicted with great potential as hydrogen sensing materials. This method provides a way to accelerate the discovery of innovative materials by avoiding the time-consuming empirical principles in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castelvecchi, D. How the hydrogen revolution can help save the planet - and how it can’t. Nature 2022, 611, 440–443.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Shih, A. J.; Monteiro, M. C. O.; Dattila, F.; Pavesi, D.; Philips, M.; da Silva, A. H. M.; Vos, R. E.; Ojha, K.; Park, S.; van der Heijden, O. et al. Water electrolysis. Nat. Rev. Methods Primers 2022, 2, 84.

    Article  CAS  Google Scholar 

  3. Zhang, B. W.; Lui, Y. H.; Ni, H. W.; Hu, S. Bimetallic (FexNi1−x)2P nanoarrays as exceptionally efficient electrocatalysts for oxygen evolution in alkaline and neutral media. Nano Energy 2017, 38, 553–560.

    Article  CAS  Google Scholar 

  4. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    Article  CAS  Google Scholar 

  5. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  6. Luong, H. M.; Pham, M. T.; Guin, T.; Madhogaria, R. P.; Phan, M. H.; Larsen, G. K.; Nguyen, T. D. Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. Nat. Commun. 2021, 12, 2414.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Zhang, B. W.; Zhu, C. Q.; Wu, Z. S.; Stavitski, E.; Lui, Y. H.; Kim, T. H.; Liu, H.; Huang, L.; Luan, X. Z.; Zhou, L. et al. Integrating Rh species with NiFe-layered double hydroxide for overall water splitting. Nano Lett. 2020, 20, 136–144.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Zhang, Y.; Shao, Q.; Long, S.; Huang, X. Q. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting. Nano Energy 2018, 45, 448–455.

    Article  CAS  Google Scholar 

  9. Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

    Article  CAS  Google Scholar 

  10. Jiang, D. F.; Otitoju, T. A.; Ouyang, Y. Y.; Shoparwe, N. F.; Wang, S.; Zhang, A. L.; Li, S. X. A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants. Catalysts 2021, 11, 1039.

    Article  CAS  Google Scholar 

  11. Pan, H. Y.; Zhou, L. H.; Zheng, W.; Liu, X. H.; Zhang, J.; Pinna, N. Atomic layer deposition to heterostructures for application in gas sensors. Int. J. Extrem. Manuf. 2023, 5, 022008.

    Article  Google Scholar 

  12. Chu, T. S.; Rong, C.; Zhou, L.; Mao, X. Y.; Zhang, B. W.; Xuan, F. Z. Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 2023, 35, e2206783.

    Article  PubMed  Google Scholar 

  13. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  14. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  15. Singla, M.; Sharma, D.; Jaggi, N. Effect of transition metal (Cu and Pt) doping/co-doping on hydrogen gas sensing capability of graphene: A DFT study. Int. J. Hydrogen Energy 2021, 46, 16188–16201.

    Article  CAS  Google Scholar 

  16. Eroglu, E.; Aydin, S.; Şimşek, M. Effect of boron substitution on hydrogen storage in Ca/DCV graphene: A first-principle study. Int. J. Hydrogen Energy 2019, 44, 27511–27528.

    Article  CAS  Google Scholar 

  17. Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

    Article  CAS  PubMed  Google Scholar 

  18. Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  21. Putz, M. V.; Mingos, D. M. P. Applications of Density Functional Theory to Biological and Bioinorganic Chemistry; Springer: Berlin, 2013; pp 5–7.

    Book  Google Scholar 

  22. Sim, E.; Song, S.; Vuckovic, S.; Burke, K. Improving results by improving densities: Density-corrected density functional theory. J. Am. Chem. Soc. 2022, 144, 6625–6639.

    Article  CAS  PubMed  Google Scholar 

  23. Dobrojevic, M.; Bacanin, N. IoT as a backbone of intelligent homestead automation. Electronics 2022, 11, 1004.

    Article  Google Scholar 

  24. Dada, E. G.; Bassi, J. S.; Chiroma, H.; Abdulhamid, S. M.; Adetunmbi, A. O.; Ajibuwa, O. E. Machine learning for email spam filtering: Review, approaches and open research problems. Heliyon 2019, 5, e01802.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shah, H. A.; Liu, J.; Yang, Z.; Feng, J. Review of machine learning methods for the prediction and reconstruction of metabolic pathways. Front. Mol. Biosci. 2021, 8, 634141.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, Y.; Wang, X.; Zhao, Y. J.; Wu, Q. Y.; Nie, H. D.; Si, H. L.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Highly efficient metalfree catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Res. 2022, 15, 4000–4007.

    Article  CAS  ADS  Google Scholar 

  27. Jiao, D. X.; Zhang, D. T.; Wang, D. W.; Fan, J. C.; Ma, X. C.; Zhao, J. X.; Zheng, W. T.; Cui, X. Q. Applying machine-learning screening of single transition metal atoms anchored on N-doped γ-graphyne for carbon monoxide electroreduction toward C-1 products. Nano Res. 2023, 16, 11511–11520.

    Article  CAS  ADS  Google Scholar 

  28. Tripathi, K.; Gupta, V.; Awasthi, V.; Pant, K. K.; Upadhyayula, S. Forecasting catalytic property-performance correlations for CO2 hydrogenation to methanol via surrogate machine learning framework. Adv. Sustainable Syst. 2023, 7, 2200416.

    Article  CAS  Google Scholar 

  29. Wang, J. F.; Panchal, A. A.; Canepa, P. Strategies for fitting accurate machine-learned inter-atomic potentials for solid electrolytes. Mater. Futures 2023, 2, 015101.

    Article  ADS  Google Scholar 

  30. Wen, T. Q.; Zhang, L. F.; Wang, H.; E, W.; Srolovitz, D. J. Deep potentials for materials science. Mater. Futures 2022, 1, 022601.

    Article  Google Scholar 

  31. Sun, M. Z.; Wu, T.; Dougherty, A. W.; Lam, M.; Huang, B. L.; Li, Y. L.; Yan, C. H. Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv. Energy Mater. 2021, 11, 2003796.

    Article  CAS  Google Scholar 

  32. Umer, M.; Umer, S.; Zafari, M.; Ha, M. R.; Anand, R.; Hajibabaei, A.; Abbas, A.; Lee, G.; Kim, K. S. Machine learning assisted high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. J. Mater. Chem. A 2022, 10, 6679–6689.

    Article  CAS  Google Scholar 

  33. Wang, X.; Bian, W. Y.; Zhang, T. Y.; Zhao, Y. J.; Shao, M. W.; Lin, H. P.; Liu, Y.; Huang, H.; Kang, Z. H. Highly crystalline core dominated the catalytic performance of carbon dot for cyclohexane to adipic acid reaction. Nano Res. 2022, 15, 7662–7669.

    Article  CAS  ADS  Google Scholar 

  34. Ji, Z. H.; Zhang, L. L.; Tang, D. M.; Chen, C. M.; Nordling, T. E. M.; Zhang, Z. D.; Ren, C. L.; Da, B.; Li, X.; Guo, S. Y. et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Res. 2021, 14, 4610–4615.

    Article  CAS  ADS  Google Scholar 

  35. Li, L. L.; Chang, X.; Lin, X. Y.; Zhao, Z. J.; Gong, J. L. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178.

    Article  CAS  PubMed  Google Scholar 

  36. Rong, C.; Zhou, L.; Zhang, B. W.; Xuan, F. Z. Machine learning for mechanics prediction of 2D MXene-based aerogels. Compos. Commun. 2023, 38, 101474.

    Article  Google Scholar 

  37. Jiang, K.; Siahrostami, S.; Akey, A. J.; Li, Y. B.; Lu, Z. Y.; Lattimer, J.; Hu, Y. F.; Stokes, C.; Gangishetty, M.; Chen, G. X. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017, 3, 950–960.

    Article  CAS  Google Scholar 

  38. Chen, H.; Wu, Q. N.; Wang, Y. F.; Zhao, Q. F.; Ai, X.; Shen, Y. C.; Zou, X. X. D-sp orbital hybridization: A strategy for activity improvement of transition metal catalysts. Chem. Commun. 2022, 58, 7730–7740.

    Article  CAS  Google Scholar 

  39. Wang, X.; Zhang, Y. W.; Wu, J.; Zhang, Z.; Liao, Q. L.; Kang, Z.; Zhang, Y. Single-atom engineering to ignite 2D transition metal dichalcogenide based catalysis: Fundamentals, progress, and beyond. Chem. Rev. 2022, 122, 1273–1348.

    Article  CAS  PubMed  Google Scholar 

  40. Wu, L. P.; Hu, S. L.; Yu, W. S.; Shen, S. P.; Li, T. Stabilizing mechanism of single-atom catalysts on a defective carbon surface. npj Comput. Mater. 2020, 6, 23.

    Article  CAS  ADS  Google Scholar 

  41. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Wu, L. P.; Ma, L.; Li, T. Y.; Pang, Z. Q.; Jiao, M. L.; Liang, Z. Q.; Gao, J. L. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 2019, 14, 851–857.

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Wang, J. C.; Oschatz, M.; Biemelt, T.; Borchardt, L.; Senkovska, I.; Lohe, M. R.; Kaskel, S. Synthesis, characterization, and hydrogen storage capacities of hierarchical porous carbide derived carbon monolith. J. Mater. Chem. 2012, 22, 23893–23899.

    Article  CAS  Google Scholar 

  44. Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676–2682.

    Article  CAS  PubMed  Google Scholar 

  45. Ma, R. G.; Ren, X. D.; Xia, B. Y.; Zhou, Y.; Sun, C.; Liu, Q.; Liu, J. J.; Wang, J. C. Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 2016, 9, 808–819.

    Article  CAS  Google Scholar 

  46. Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688–695.

    Article  CAS  Google Scholar 

  47. Wu, L. P.; Guo, T.; Li, T. Data-driven high-throughput rational design of double-atom catalysts for oxygen evolution and reduction. Adv. Funct. Mater. 2022, 32, 2203439.

    Article  CAS  Google Scholar 

  48. Kumar, N.; Haviar, S.; Zeman, P. Three-layer PdO/CuWO4/CuO system for hydrogen gas sensing with reduced humidity interference. Nanomaterials 2021, 11, 3456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hashtroudi, H.; Yu, A. M.; Juodkazis, S.; Shafiei, M. Two-dimensional Dy2O3-Pd-PDA/rGO heterojunction nanocomposite: Synergistic effects of hybridisation, UV illumination and relative humidity on hydrogen gas sensing. Chemosensors 2022, 10, 78.

    Article  CAS  Google Scholar 

  50. Li, J.; Li, B.; Huang, H.; Yan, S.; Yuan, C. Z.; Wu, N. T.; Guo, D. L.; Liu, X. M. Polyvinylpyrrolidone gel based Pt/Ni(OH)2 heterostructures with redistributing charges for enhanced alkaline hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 27061–27071.

    Article  CAS  Google Scholar 

  51. Shen, S. J.; Lin, Z. P.; Song, K.; Wang, Z. P.; Huang, L. G.; Yan, L. H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Reversed active sites boost the intrinsic activity of graphene-like cobalt selenide for hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 12360–12365.

    Article  CAS  Google Scholar 

  52. Xing, H. R.; Hu, P.; Li, S. L.; Zuo, Y. G.; Han, J. Y.; Hua, X. J.; Wang, K. S.; Yang, F.; Feng, P. F.; Chang, T. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review. J. Mater. Sci. Technol. 2021, 62, 180–194.

    Article  CAS  Google Scholar 

  53. Liao, X. B.; Lu, R. H.; Xia, L. X.; Liu, Q.; Wang, H.; Zhao, K.; Wang, Z. Y.; Zhao, Y. Density functional theory for electrocatalysis. Energy Environ. Mater. 2022, 5, 157–185.

    Article  CAS  Google Scholar 

  54. Bursch, M.; Mewes, J. M.; Hansen, A.; Grimme, S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem., Int. Ed. 2022, 61, e202205735.

    Article  CAS  ADS  Google Scholar 

  55. Adekoya, O. C.; Adekoya, G. J.; Sadiku, E. R.; Hamam, Y.; Ray, S. S. Application of DFT calculations in designing polymer-based drug delivery systems: An overview. Pharmaceutics 2022, 14, 1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mohandes, S. R.; Zhang, X. Q.; Mahdiyar, A. A comprehensive review on the application of artificial neural networks in building energy analysis. Neurocomputing 2019, 340, 55–75.

    Article  Google Scholar 

  57. Nazemi, E.; Dinca, M.; Movafeghi, A.; Rokrok, B.; Dastjerdi, M. H. C. Estimation of volumetric water content during imbibition in porous building material using real time neutron radiography and artificial neural network. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 940, 344–350.

    Article  CAS  ADS  Google Scholar 

  58. Sharifzadeh, M.; Sikinioti-Lock, A.; Shah, N. Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian process regression. Renewable Sustainable Energy Rev. 2019, 108, 513–538.

    Article  Google Scholar 

  59. Xiang, Q.; Wang, X. D.; Lai, J.; Song, Y. F.; Li, R.; Lei, L. Multi-scale group-fusion convolutional neural network for high-resolution range profile target recognition. IET Radar Sonar Navig. 2022, 16, 1997–2016.

    Article  Google Scholar 

  60. Hu, X.; Zhang, D. H.; Tan, R. J.; Xie, Q. Controlled cooling temperature prediction of hot-rolled steel plate based on multi-scale convolutional neural network. Metals 2022, 12, 1455.

    Article  CAS  Google Scholar 

  61. Yang, X.; Zhu, Y. T.; Guo, Y. Q.; Zhou, D. K. An image super-resolution network based on multi-scale convolution fusion. Vis. Comput. 2022, 38, 4307–4317.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 52105145 and 12274124), the Shanghai Pilot Program for Basic Research (No. 22TQ1400100-6), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Tian, Bowei Zhang or Fu-Zhen Xuan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Tian, P., Zhang, B. et al. Data-driven rational design of single-atom materials for hydrogen evolution and sensing. Nano Res. 17, 3352–3358 (2024). https://doi.org/10.1007/s12274-023-6137-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6137-5

Keywords

Navigation