Skip to main content
Log in

High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It has been a great challenge to optimize the growth conditions toward structure-controlled growth of single-wall carbon nanotubes (SWCNTs). Here, a high-throughput method combined with machine learning is reported that efficiently screens the growth conditions for the synthesis of high-quality SWCNTs. Patterned cobalt (Co) nanoparticles were deposited on a numerically marked silicon wafer as catalysts, and parameters of temperature, reduction time and carbon precursor were optimized. The crystallinity of the SWCNTs was characterized by Raman spectroscopy where the featured G/D peak intensity (IG/ID) was extracted automatically and mapped to the growth parameters to build a database. 1,280 data were collected to train machine learning models. Random forest regression (RFR) showed high precision in predicting the growth conditions for high-quality SWCNTs, as validated by further chemical vapor deposition (CVD) growth. This method shows great potential in structure-controlled growth of SWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao, R.; Pint, C. L.; Islam, A. E.; Weatherup, R. S.; Hofmann, S.; Meshot, E. R.; Wu, F. Q.; Zhou, C. W.; Dee, N.; Amama, P. B. et al. Carbon nanotubes and related nanomaterials: Critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 2018, 12, 11756–11784.

    Article  CAS  Google Scholar 

  2. Ding, F.; Rosén, A.; Bolton, K. Dependence of SWNT growth mechanism on temperature and catalyst particle size: Bulk versus surface diffusion. Carbon 2005, 43, 2215–2217.

    Article  CAS  Google Scholar 

  3. Ding, F.; Bolton, K.; Rosén, A. Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Comput. Mater. Sci. 2006, 35, 243–246.

    Article  CAS  Google Scholar 

  4. Xu, Z. W.; Yan, T. Y.; Ding, F. Atomistic simulation of the growth of defect-free carbon nanotubes. Chem. Sci. 2015, 6, 4704–4711.

    Article  CAS  Google Scholar 

  5. Agrawal, A.; Choudhary, A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater. 2016, 4, 053208.

    Article  Google Scholar 

  6. Kind, H.; Bonard, J. M.; Emmenegger, C.; Nilsson, L. O.; Hernadi, K.; Maillard-Schaller, E.; Schlapbach, L.; Forró, L.; Kern, K. Patterned films of nanotubes using microcontact printing of catalysts. Adv. Mater. 1999, 11, 1285–1289.

    Article  CAS  Google Scholar 

  7. Cassell, A. M.; Verma, S.; Delzeit, L.; Meyyappan, M.; Han, J. Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes. Langmuir 2001, 17, 260–264.

    Article  CAS  Google Scholar 

  8. Cassell, A. M.; Ye, Q.; Cruden, B. A.; Li, J.; Sarrazin, P. C.; Ng, H. T.; Han, J.; Meyyappan, M. Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devices. Nanotechnology 2003, 15, 9.

    Article  Google Scholar 

  9. Noda, S.; Tsuji, Y.; Murakami, Y.; Maruyama, S. Combinatorial method to prepare metal nanoparticles that catalyze the growth of single-walled carbon nanotubes. Appl. Phys. Lett. 2005, 86, 173106.

    Article  Google Scholar 

  10. Oliver, C. R.; Westrick, W.; Koehler, J.; Brieland-Shoultz, A.; Anagnostopoulos-Politis, I.; Cruz-Gonzalez, T.; Hart, A. J. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery. Rev. Sci. Instrum. 2013, 84, 115105.

    Article  Google Scholar 

  11. Nikolaev, P.; Hooper, D.; Perea-Lopez, N.; Terrones, M.; Maruyama, B. Discovery of wall-selective carbon nanotube growth conditions via automated experimentation. ACS Nano 2014, 8, 10214–10222.

    Article  CAS  Google Scholar 

  12. Sugime, H.; Sato, T.; Nakagawa, R.; Cepek, C.; Noda, S. Gd-enhanced growth of multi-millimeter-tall forests of single-wall carbon nanotubes. ACS Nano 2019, 13, 13208–13216.

    Article  CAS  Google Scholar 

  13. Hasegawa, K.; Noda, S. Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water. ACS Nano 2011, 5, 975–984.

    Article  CAS  Google Scholar 

  14. Chen, Z. M.; Kim, D. Y.; Hasegawa, K.; Noda, S. Methane-assisted chemical vapor deposition yielding millimeter-tall single-wall carbon nanotubes of smaller diameter. ACS Nano 2013, 7, 6719–6728.

    Article  CAS  Google Scholar 

  15. Kluender, E. J.; Hedrick, J. L.; Brown, K. A.; Rao, R.; Meckes, B.; Du, J. S.; Moreau, L. M.; Maruyama, B.; Mirkin, C. A. Catalyst discovery through megalibraries of nanomaterials. Proc. Natl. Acad. Sci. USA 2019, 116, 40–45.

    Article  CAS  Google Scholar 

  16. Nikolaev, P.; Hooper, D.; Webber, F.; Rao, R.; Decker, K.; Krein, M.; Poleski, J.; Barto, R.; Maruyama, B. Autonomy in materials research: A case study in carbon nanotube growth. npj Comput. Mater. 2016, 2, 16031.

    Article  Google Scholar 

  17. Abad, S. N. K.; Ganjeh, E.; Zolriasatein, A.; Shabani-Nia, F.; Siadati, M. H. Predicting carbon nanotube diameter using artificial neural network along with characterization and field emission measurement. Iran. J. Sci. Technol. Trans. A: Sci. 2017, 41, 151–163.

    Article  Google Scholar 

  18. Iakovlev, V. Y.; Krasnikov, D. V.; Khabushev, E. M.; Kolodiazhnaia, J. V.; Nasibulin, A. G. Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon 2019, 153, 100–103.

    Article  CAS  Google Scholar 

  19. Chang, J.; Nikolaev, P.; Carpena-Núñez, J.; Rao, R.; Decker, K.; Islam, A. E.; Kim, J.; Pitt, M. A.; Myung, J. I.; Maruyama, B. Efficient closed-loop maximization of carbon nanotube growth rate using bayesian optimization. Sci. Rep. 2020, 10, 9040.

    Article  CAS  Google Scholar 

  20. Wang, H.; Yuan, Y.; Wei, L.; Goh, K.; Yu, D. S.; Chen, Y. Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon 2015, 81, 1–19.

    Article  CAS  Google Scholar 

  21. Wang, J. S.; Yoo, Y.; Gao, C.; Takeuchi, I.; Sun, X. D.; Chang, H.; Xiang, X. D.; Schultz, P. G. Identification of a blue photoluminescent composite material from a combinatorial library. Science 1998, 279, 1712–1714.

    Article  CAS  Google Scholar 

  22. Dresselhaus, M. S.; Jorio, A.; Filho, A. G. S.; Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 2010, 368, 5355–5377.

    Article  CAS  Google Scholar 

  23. Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 1974, 36, 111–133.

    Google Scholar 

  24. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.

    Article  Google Scholar 

  25. Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

    Article  CAS  Google Scholar 

  26. Zhang, F.; Hou, P. X.; Liu, C.; Wang, B. W.; Jiang, H.; Chen, M. L.; Sun, D. M.; Li, J. C.; Cong, H. T.; Kauppinen, E. I. et al. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nat. Commun. 2016, 7, 11160.

    Article  CAS  Google Scholar 

  27. Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

    Article  CAS  Google Scholar 

  28. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

    Google Scholar 

  29. Chollet, F. Keras: The Python Deep Learning library; Astrophysics Source Code Library, 2018. https://keras.io/ (accessed Nov 9, 2020).

  30. Kohonen, T. An introduction to neural computing. Neural Netw. 1988, 1, 3–16.

    Article  Google Scholar 

  31. Nair, V.; Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010, pp 807–814.

  32. Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization. 2014, arXiv:1412.6980. arXiv.org e-Print archive. https://arxiv.org/abs/1412.6980v1 (accessed Dec 22, 2014).

  33. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.

    Google Scholar 

  34. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.; Sheridan, R. P.; Feuston, B. P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Zexin Tian and Jianqi Huang for help with training the artificial neural network model, and Shemon Baptiste and Hao-Wei “Ric” Tu for repeating and confirming the model predictions. The authors also thank Hui Li for help with AFM characterization. This project is supported by the National Key Research and Development Program of China (No. 2016YFA0200101), the National Natural Science Foundation of China (Nos. 51522210, 51972311, 51625203, 51532008, 51761135122 and 52001322), JSPS KAKENHI Grant Number JP20K05281 and JP25820336, and MOST 108-2634-F-006-009 and MOST 109-2224-E-006-003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dai-Ming Tang or Chang Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, ZH., Zhang, L., Tang, DM. et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Res. 14, 4610–4615 (2021). https://doi.org/10.1007/s12274-021-3387-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3387-y

Keywords

Navigation