Skip to main content
Log in

Water-solid contact electrification and catalysis adjusted by surface functional groups

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chemical functional groups on solid surfaces greatly influence contact electrification (CE) at water-solid interfaces. Previous studies of their effects mainly swapped materials or bonded related molecules to a substrate, introducing other factors of influence. This work aims at unambiguously demonstrating the role of functional groups in water-polymer CE. We study the contribution of functional groups, by using ion coupled plasma etching to modify a high-density polyethylene (HDPE) film, a polymer with a naturally quasi-null charge transfer ability. Fluoride (HDPE−F) and hydroxyl (HDPE−OH) functional groups are generated and endowed HDPE with charge withdrawing ability. HDPE−F withdraws 2.5–2.7 times more charges than HDPE−OH. Concurrently, the surface charges accumulated generate electrostatic forces, altering the droplets motion. This phenomenon provides another approach to study CE, helping to evaluate the contribution of electrons to solid-liquid CE. Finally, employing HDPE−F to perform contact-electro-catalysis shows its activity is 2.4 times higher than that of commercial fluorinated films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bard, A. J.; Fan, F. R. F.; Pierce, D. T.; Unwin, P. R.; Wipf, D. O.; Zhou, F. M. Chemical imaging of surfaces with the scanning electrochemical microscope. Science 1991, 254, 68–74.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Ciampi, S.; Darwish, N.; Aitken, H. M.; Díez-Pérez, I.; Coote, M. L. Harnessing electrostatic catalysis in single molecule, electrochemical and chemical systems: A rapidly growing experimental tool box. Chem. Soc. Rev. 2018, 47, 5146–5164.

    Article  CAS  PubMed  Google Scholar 

  3. Vogel, Y. B.; Evans, C. W.; Belotti, M.; Xu, L. K.; Russell, I. C.; Yu, L. J.; Fung, A. K. K.; Hill, N. S.; Darwish, N.; Gonçales, V. R. et al. The corona of a surface bubble promotes electrochemical reactions. Nat. Commun. 2020, 11, 6323.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Vogel, Y. B.; Molina, A.; Gonzalez, J.; Ciampi, S. Quantitative analysis of cyclic voltammetry of redox monolayers adsorbed on semiconductors: Isolating electrode kinetics, lateral interactions, and diode currents. Anal. Chem. 2019, 91, 5929–5937.

    Article  CAS  PubMed  Google Scholar 

  5. Favaro, M.; Jeong, B.; Ross, P. N.; Yano, J.; Hussain, Z.; Liu, Z.; Crumlin, E. J. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 2016, 7, 12695.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 2005, 437, 640–647.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Ball, P. Water as an active constituent in cell biology. Chem. Rev. 2008, 108, 74–108.

    Article  CAS  PubMed  Google Scholar 

  8. Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Wang, Z. L. Catch wave power in floating nets. Nature 2017, 542, 159–160.

    Article  PubMed  ADS  Google Scholar 

  10. Chatterjee, S.; Burman, S. R.; Khan, I.; Saha, S.; Choi, D.; Lee, S.; Lin, Z. H. Recent advancements in solid–liquid triboelectric nanogenerators for energy harvesting and self-powered applications. Nanoscale 2020, 12, 17663–17697.

    Article  CAS  PubMed  Google Scholar 

  11. Khan, U.; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429–6432.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

    Article  CAS  Google Scholar 

  13. Wang, Z. M.; Berbille, A.; Feng, Y. W.; Li, S. T.; Zhu, L. P.; Tang, W.; Wang, Z. L. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat. Commun. 2022, 13, 130.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  14. Zhao, X.; Su, Y. S.; Berbille, A.; Wang, Z. L.; Tang, W. Degradation of methyl orange by dielectric films based on contact-electrocatalysis. Nanoscale 2023, 15, 6243–6251.

    Article  CAS  PubMed  Google Scholar 

  15. Thomas III, S. W.; Vella, S. J.; Dickey, M. D.; Kaufman, G. K.; Whitesides, G. M. Controlling the kinetics of contact electrification with patterned surfaces. J. Am. Chem. Soc. 2009, 131, 8746–8747.

    Article  CAS  PubMed  Google Scholar 

  16. Lin, S. Q.; Xu, L.; Wang, A. C.; Wang, Z. L. Quantifying electron-transfer in liquid–solid contact electrification and the formation of electric double-layer. Nat. Commun. 2020, 11, 399.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Zhang, J. Y.; Lin, S. Q.; Zheng, M. L.; Wang, Z. L. Triboelectric nanogenerator as a probe for measuring the charge transfer between liquid and solid surfaces. ACS Nano 2021, 15, 14830–14837.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, J. Y.; Lin, S. Q.; Wang, Z. L. Triboelectric nanogenerator array as a probe for in situ dynamic mapping of interface charge transfer at a liquid–solid contacting. ACS Nano 2023, 17, 1646–1652.

    Article  CAS  Google Scholar 

  19. Zhan, F.; Wang, A. C.; Xu, L.; Lin, S. Q.; Shao, J. J.; Chen, X. Y.; Wang, Z. L. Electron transfer as a liquid droplet contacting a polymer surface. ACS Nano 2020, 14, 17565–17573.

    Article  CAS  PubMed  Google Scholar 

  20. Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Contact electrification at the liquid–solid interface. Chem. Rev. 2022, 122, 5209–5232.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, Z. H.; Zhou, L. L.; Li, S. X.; Liu, D.; Li, Y. H.; Gao, Y. K.; Liu, Y. B.; Dai, Y. J.; Wang, J.; Wang, Z. L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 2021, 12, 4686.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Liu, D.; Zhou, L. L.; Cui, S. N.; Gao, Y. K.; Li, S. X.; Zhao, Z. H.; Yi, Z. Y.; Zou, H. Y.; Fan, Y. J.; Wang, J. et al. Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown. Nat. Commun. 2022, 13, 6019.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Liu, Z. Q.; Huang, Y. Z.; Shi, Y. X.; Tao, X. L.; He, H. Z.; Chen, F. D.; Huang, Z. X.; Wang, Z. L.; Chen, X. Y.; Qu, J. P. Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nat. Commun. 2022, 13, 4083.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Nan, Y.; Shao, J. J.; Willatzen, M.; Wang, Z. L. Understanding contact electrification at water/polymer interface. Research 2022, 2022, 9861463.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Li, S. Y.; Nie, J. H.; Shi, Y. X.; Tao, X. L.; Wang, F.; Tian, J. W.; Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Contributions of different functional groups to contact electrification of polymers. Adv. Mater. 2020, 32, 2001307.

    Article  CAS  Google Scholar 

  26. Lin, S. Q.; Zheng, M. L.; Luo, J. J.; Wang, Z. L. Effects of surface functional groups on electron transfer at liquid–solid interfacial contact electrification. ACS Nano 2020, 14, 10733–10741.

    Article  CAS  PubMed  Google Scholar 

  27. Shin, S. H.; Kwon, Y. H.; Kim, Y. H.; Jung, J. Y.; Lee, M. H.; Nah, J. Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 2015, 9, 4621–4627.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, B. L.; Xia, Y.; He, R. X.; Sang, H. Q.; Zhang, W. C.; Li, J.; Chen, L. F.; Wang, P.; Guo, S. S.; Yin, Y. G. et al. Water–solid contact electrification causes hydrogen peroxide production from hydroxyl radical recombination in sprayed microdroplets. Proc. Natl. Acad. Sci. USA 2022, 119, e2209056119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma, X.; Li, S. Y.; Dong, S. J.; Nie, J. H.; Iwamoto, M.; Lin, S. Q.; Zheng, L.; Chen, X. Y. Regulating the output performance of triboelectric nanogenerator by using P(VDF-TrFE) Langmuir monolayers. Nano Energy 2019, 66, 104090.

    Article  CAS  Google Scholar 

  30. Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  31. Li, X. M.; Bista, P.; Stetten, A. Z.; Bonart, H.; Schür, M. T.; Hardt, S.; Bodziony, F.; Marschall, H.; Saal, A.; Deng, X. et al. Spontaneous charging affects the motion of sliding drops. Nat. Phys. 2022, 18, 713–719.

    Article  CAS  Google Scholar 

  32. Wang, X. J.; Zhang, J. Y.; Liu, X.; Lin, S. Q.; Wang, Z. L. Studying the droplet sliding velocity and charge transfer at a liquid–solid interface. J. Mater. Chem. A 2023, 11, 5696–5702.

    Article  CAS  Google Scholar 

  33. Zhang, J. Y.; Rogers, F. J. M.; Darwish, N.; Gonçales, V. R.; Vogel, Y. B.; Wang, F.; Gooding, J. J.; Peiris, M. C. R.; Jia, G. H.; Veder, J. P. et al. Electrochemistry on tribocharged polymers is governed by the stability of surface charges rather than charging magnitude. J. Am. Chem. Soc. 2019, 141, 5863–5870.

    Article  CAS  PubMed  Google Scholar 

  34. Xu, C.; Zhang, B. B.; Wang, A. C.; Zou, H. Y.; Liu, G. L.; Ding, W. B.; Wu, C. S.; Ma, M.; Feng, P. Z.; Lin, Z. Q. et al. Contact-electrification between two identical materials: Curvature effect. ACS Nano 2019, 13, 2034–2041.

    CAS  PubMed  Google Scholar 

  35. Berbille, A.; Li, X. F.; Su, Y. S.; Li, S. N.; Zhao, X.; Zhu, L. P.; Wang, Z. L. Mechanism for generating H2O2 at water–solid interface by contact-electrification. Adv. Mater., in press, https://doi.org/10.1002/adma.202304387.

Download references

Acknowledgements

This research was supported by the National Key R & D Project from Minister of Science and Technology (No. 2021YFA1201601) and National Natural Science Foundation of China (No. 52192610), Youth Innovation Promotion Association (W.T.), and CAS-TWAS President’s Fellowship (A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Berbille, A., Wang, Z.L. et al. Water-solid contact electrification and catalysis adjusted by surface functional groups. Nano Res. 17, 3344–3351 (2024). https://doi.org/10.1007/s12274-023-6125-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6125-9

Keywords

Navigation