Skip to main content

Advertisement

Log in

Synthesis of covalent organic framework materials and their application in the field of sensing

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) are an emerging type of porous crystalline polymers formed by combining strong covalent bonds with organic building blocks. Due to their large surface area, high intrinsic pore space, good crystallization properties, high stability, and designability of the resultant units, COFs are widely studied and used in the fields of gas adsorption, drug transport, energy storage, photoelectric catalysis, electrochemistry, and sensors. In recent years, the rapid development of the Internet of Things and people’s yearning for a better life have put forward higher and more requirements for sensors, which are the core components of the Internet of Things. Therefore, this paper reviews the recent progress of COFs in synthesis methods and sensing applications, especially in the last five years. This paper first introduces structure, properties, and synthesis methods of COFs and discusses advantages and disadvantages of different synthesis methods. Then, the research progress of COFs in different sensing fields, such as metal ion sensors, gas sensors, biomedical sensors, humidity sensors, and pH sensors, is introduced systematically. Conclusions and prospects are also presented in order to provide a reference for researchers concerned with COFs and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

    Article  Google Scholar 

  2. Kessler, C.; Schuldt, R.; Emmerling, S.; Lotsch, B. V.; Kästner, J.; Gross, J.; Hansen, N. Influence of layer slipping on adsorption of light gases in covalent organic frameworks: A combined experimental and computational study. Micropor. Mesoporous Mater. 2022, 336, 111796.

    Article  CAS  Google Scholar 

  3. Kumar, S.; Abdulhamid, M. A.; Wonanke, A. D. D.; Addicoat, M. A.; Szekely, G. Norbornane-based covalent organic frameworks for gas separation. Nanoscale 2022, 14, 2475–2481.

    Article  CAS  Google Scholar 

  4. Nailwal, Y.; Wonanke, A. D. D.; Addicoat, M. A.; Pal, S. K. A dual-function highly crystalline covalent organic framework for HCl sensing and visible-light heterogeneous photocatalysis. Macromolecules 2021, 54, 6595–6604.

    Article  CAS  Google Scholar 

  5. Yusran, Y.; Li, H.; Guan, X. Y.; Li, D. H.; Tang, L. X.; Xue, M.; Zhuang, Z. B.; Yan, Y. S.; Valtchev, V.; Qiu, S. L. et al. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater. 2020, 32, 1907289.

    Article  CAS  Google Scholar 

  6. Wu, M. X.; Yang, Y. W. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery. Chin. Chem. Lett. 2017, 28, 1135–1143.

    Article  CAS  Google Scholar 

  7. Liu, X. G.; Huang, D. L.; Lai, C.; Zeng, G. M.; Qin, L.; Wang, H.; Yi, H.; Li, B. S.; Liu, S. Y.; Zhang, M. M. et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 2019, 48, 5266–5302.

    Article  CAS  Google Scholar 

  8. Segura, J. L.; Royuela, S.; Ramos, M. M. Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 2019, 48, 3903–3945.

    Article  CAS  Google Scholar 

  9. Li, Y.; Guo, X. H.; Li, X. F.; Zhang, M. C.; Jia, Z. M.; Deng, Y.; Tian, Y.; Li, S. J.; Ma, L. J. Redox-active two-dimensional covalent organic frameworks (COFs) for selective reductive separation of valence-variable, redox-sensitive and long-lived radionuclides. Angew. Chem. 2020, 132, 4197–4204.

    Article  Google Scholar 

  10. Rodriguez-San-Miguel, D.; Zamora, F. Processing of covalent organic frameworks: An ingredient for a material to succeed. Chem. Soc. Rev. 2019, 48, 4375–4386.

    Article  CAS  Google Scholar 

  11. Kandambeth, S.; Dey, K.; Banerjee, R. Covalent organic frameworks: Chemistry beyond the structure. J. Am. Chem. Soc. 2019, 141, 1807–1822.

    Article  CAS  Google Scholar 

  12. Xu, S. Q.; Zhan, T. G.; Wen, Q.; Pang, Z. F.; Zhao, X. Diversity of covalent organic frameworks (COFs): A 2D COF containing two kinds of triangular micropores of different sizes. ACS Macro Lett. 2016, 5, 99–102.

    Article  CAS  Google Scholar 

  13. Ma, Y. X.; Li, Z. J.; Wei, L.; Ding, S. Y.; Zhang, Y. B.; Wang, W. A dynamic three-dimensional covalent organic framework. J. Am. Chem. Soc. 2017, 139, 4995–4998.

    Article  CAS  Google Scholar 

  14. Díaz, U.; Corma, A. Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coordin. Chem. Rev. 2016, 311, 85–124.

    Article  Google Scholar 

  15. Vitaku, E.; Dichtel, W. R. Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 2017, 139, 12911–12914.

    Article  CAS  Google Scholar 

  16. Wei, H.; Chai, S. Z.; Hu, N. T.; Yang, Z.; Wei, L. M.; Wang, L. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 2015, 51, 12178–12181.

    Article  CAS  Google Scholar 

  17. Kuecken, S.; Schmidt, J.; Zhi, L. J.; Thomas, A. Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: A facile synthesis route for covalent triazine frameworks. J. Mater. Chem. A 2015, 3, 24422–24427.

    Article  CAS  Google Scholar 

  18. Liu, W.; Cao, Y. P.; Wang, W. Z.; Gong, D. Y.; Cao, T.; Qian, J.; Iqbal, K.; Qin, W. W.; Guo, H. C. Mechanochromic luminescent covalent organic frameworks for highly selective hydroxyl radical detection. Chem. Commun. 2019, 55, 167–170.

    Article  CAS  Google Scholar 

  19. Zhou, D.; Tan, X. Y.; Wu, H. M.; Tian, L. H.; Li, M. Synthesis of C–C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid–liquid interface. Angew. Chem. 2019, 131, 1390–1395.

    Article  Google Scholar 

  20. Zhang, F. Y.; Zhang, J. L.; Zhang, B. X.; Tan, X. N.; Shao, D.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Feng, J. Q.; Han, B. X. et al. Room-temperature synthesis of covalent organic framework (COF-LZU1) nanobars in CO2/water solvent. ChemSusChem 2018, 11, 3576–3580.

    Article  CAS  Google Scholar 

  21. Luo, Q. X.; Cai, Y. J.; Mao, X. L.; Li, Y. J.; Zhang, C. R.; Liu, X.; Chen, X. R.; Liang, R. P.; Qiu, J. D. Tuned-potential covalent organic framework electrochemiluminescence platform for lutetium analysis. J. Electroanal Chem. 2022, 923, 116831.

    Article  CAS  Google Scholar 

  22. Zhang, T.; Chen, Y. L.; Huang, W.; Wang, Y.; Hu, X. Y. A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability. Sens. Actuators B: Chem. 2018, 276, 362–369.

    Article  CAS  Google Scholar 

  23. Zeng, J. Y.; Wang, X. S.; Zhang, X. Z. Research progress in covalent organic frameworks for photoluminescent materials. Chem.—Eur. J. 2020, 26, 16568–16581.

    Article  CAS  Google Scholar 

  24. Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

    Article  Google Scholar 

  25. Qin, Z. J.; Wu, Z. F.; Sun, Q. H.; Sun, J.; Zhang, M.; Shaymurat, T.; Lv, C. W.; Duan, H. M. Biomimetic gas sensor derived from disposable bamboo chopsticks for highly sensitive and selective detection of NH3. Chem. Eng. J. 2023, 462, 142203.

    Article  CAS  Google Scholar 

  26. Cao, D. X.; Liu, Z. Q.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin, W. Y. Coumarin-based small-molecule fluorescent chemosensors. Chem. Rev. 2019, 119, 10403–10519.

    Article  CAS  Google Scholar 

  27. Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

    Article  CAS  Google Scholar 

  28. Li, W.; Yang, C. X.; Yan, X. P. A versatile covalent organic framework-based platform for sensing biomolecules. Chem. Commun. 2017, 53, 11469–11471.

    Article  CAS  Google Scholar 

  29. Lyu, H.; Diercks, C. S.; Zhu, C. H.; Yaghi, O. M. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 6848–6852.

    Article  CAS  Google Scholar 

  30. Skorjanc, T.; Shetty, D.; Valant, M. Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sens. 2021, 6, 1461–1481.

    Article  CAS  Google Scholar 

  31. Zhang, D. Z.; Yang, Z. M.; Li, P.; Zhou, X. Y. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sens. Actuators B: Chem. 2019, 301, 127081.

    Article  CAS  Google Scholar 

  32. Chen, S. D.; Yuan, B. Q.; Liu, G.; Zhang, D. J. Electrochemical sensors based on covalent organic frameworks: A critical review. Front. Chem. 2020, 8, 601044.

    Article  CAS  Google Scholar 

  33. Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.

    Article  CAS  Google Scholar 

  34. Wang, L. Y.; Hong, S. S.; Yang, Y. X.; Song, Y. H.; Wang, L. Covalent organic frameworks for electrochemical sensors: Recent research and future prospects. Curr. Anal. Chem. 2022, 18, 646–663.

    Article  CAS  Google Scholar 

  35. Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

    Article  CAS  Google Scholar 

  36. Hu, Y. M.; Dunlap, N.; Wan, S.; Lu, S. L.; Huang, S. F.; Sellinger, I.; Ortiz, M.; Jin, Y. H.; Lee, S. H.; Zhang, W. Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 2019, 141, 7518–7525.

    Article  CAS  Google Scholar 

  37. Li, Z. P.; Zhang, Y. W.; Xia, H.; Mu, Y.; Liu, X. M. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions. Chem. Commun. 2016, 52, 6613–6616.

    Article  CAS  Google Scholar 

  38. Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 2011, 332, 228–231.

    Article  CAS  Google Scholar 

  39. Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. 2015, 6, 3931–3939.

    Article  CAS  Google Scholar 

  40. Zhou, Z. M.; Zhong, W. F.; Cui, K. X.; Zhuang, Z. Y.; Li, L. Y.; Li, L. Y.; Bi, J. H.; Yu, Y. A covalent organic framework bearing thioether pendant arms for selective detection and recovery of Au from ultra-low concentration aqueous solution. Chem. Commun. 2018, 54, 9977–9980.

    Article  CAS  Google Scholar 

  41. Liu, M.; Chen, Y. J.; Huang, X.; Dong, L. Z.; Lu, M.; Guo, C.; Yuan, D. Q.; Chen, Y. F.; Xu, G.; Li, S. L. et al. Porphyrin-based COF 2D materials: Variable modification of sensing performances by post-metallization. Angew. Chem., Int. Ed. 2022, 61, e202115308.

    Article  Google Scholar 

  42. Zhu, H.; Geng, T. M.; Tang, K. B. Fully flexible covalent organic frameworks for fluorescence sensing 2,4,6-trinitrophenol and p-nitrophenol. Polymers 2023, 15, 653.

    Article  CAS  Google Scholar 

  43. Bu, R.; Zhang, L.; Liu, X. Y.; Yang, S. L.; Li, G.; Gao, E. Q. Synthesis and acid-responsive properties of a highly porous vinylene-linked covalent organic framework. ACS Appl. Mater. Interfaces 2021, 13, 26431–26440.

    Article  CAS  Google Scholar 

  44. Spitler, E. L.; Koo, B. T.; Novotney, J. L.; Colson, J. W.; Uribe-Romo, F. J.; Gutierrez, G. D.; Clancy, P.; Dichtel, W. R. A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking. J. Am. Chem. Soc. 2011, 133, 19416–19421.

    Article  CAS  Google Scholar 

  45. Ritchie, L. K.; Trewin, A.; Reguera-Galan, A.; Hasell, T.; Cooper, A. I. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Micropor. Mesopor. Mater. 2010, 132, 132–136.

    Article  CAS  Google Scholar 

  46. Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem., Int. Ed. 2008, 47, 3450–3453.

    Article  CAS  Google Scholar 

  47. Guan, X. Y.; Ma, Y. C.; Li, H.; Yusran, Y.; Xue, M.; Fang, Q. R.; Yan, Y. S.; Valtchev, V.; Qiu, S. L. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 4494–4498.

    Article  CAS  Google Scholar 

  48. Peng, Y. W.; Xu, G. D.; Hu, Z. G.; Cheng, Y. D.; Chi, C. L.; Yuan, D. Q.; Cheng, H. S.; Zhao, D. Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity. ACS Appl. Mater. Interfaces 2016, 8, 18505–18512.

    Article  CAS  Google Scholar 

  49. Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 5328–5331.

    Article  CAS  Google Scholar 

  50. Matsumoto, M.; Valentino, L.; Stiehl, G. M.; Balch, H. B.; Corcos, A. R.; Wang, F.; Ralph, D. C.; Mariñas, B. J.; Dichtel, W. R. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films. Chem 2018, 4, 308–317.

    Article  CAS  Google Scholar 

  51. Dey, K.; Pal, M.; Rout, K. C.; Kunjattu, H. S.; Das, A.; Mukherjee, R.; Kharul, U. K.; Banerjee, R. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 2017, 139, 13083–13091.

    Article  CAS  Google Scholar 

  52. Rodríguez-San-Miguel, D.; Yazdi, A.; Guillerm, V.; Pérez-Carvajal, J.; Puntes, V.; Maspoch, D.; Zamora, F. Confining functional nanoparticles into colloidal imine-based COF spheres by a sequential encapsulation-crystallization method. Chem.—Eur. J. 2017, 23, 8623–8627.

    Article  Google Scholar 

  53. de la Peña Ruigómez, A.; Rodríguez-San-Miguel, D.; Stylianou, K. C.; Cavallini, M.; Gentili, D.; Liscio, F.; Milita, S.; Roscioni, O. M.; Ruiz-González, M. L.; Carbonell, C. et al. Direct on-surface patterning of a crystalline laminar covalent organic framework synthesized at room temperature. Chem.—Eur. J. 2015, 21, 10666–10670.

    Article  Google Scholar 

  54. Liu, S. F.; Liu, Z. Q.; Su, Q.; Wu, Q. L. Multifunctional covalent organic frameworks for photocatalytic oxidative hydroxylation of arylboronic acids and fluorescence sensing for Cu2+. Miroopor. Mesopor. Mater. 2022, 333, 111737.

    Article  CAS  Google Scholar 

  55. Makhseed, S.; Samuel, J. Hydrogen adsorption in microporous organic framework polymer. Chem. Commun. 2008, 4342–4344.

  56. Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 2009, 21, 204–206.

    Article  CAS  Google Scholar 

  57. Dong, B.; Wang, W. J.; Pan, W.; Kang, G. J. Ionic liquid as a green solvent for ionothermal synthesis of 2D keto-enamine-linked covalent organic frameworks. Mater. Chem. Phys. 2019, 226, 244–249.

    Article  CAS  Google Scholar 

  58. Xiao, Y. L.; Jin, Z. Y.; He, L. X.; Ma, S. C.; Wang, C. Y.; Mu, X. W.; Song, L. Synthesis of a novel graphene conjugated covalent organic framework nanohybrid for enhancing the flame retardancy and mechanical properties of epoxy resins through synergistic effect. Compos. Part B: Eng. 2020, 182, 107616.

    Article  CAS  Google Scholar 

  59. Das, G.; Shinde, D. B.; Kandambeth, S.; Biswal, B. P.; Banerjee, R. Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. 2014, 50, 12615–12618.

    Article  CAS  Google Scholar 

  60. Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189–6235.

    Article  CAS  Google Scholar 

  61. Dai, W. Y.; Shao, F.; Szczerbiński, J.; McCaffrey, R.; Zenobi, R.; Jin, Y. H.; Schlüter, A. D.; Zhang, W. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem. 2016, 128, 221–225.

    Article  Google Scholar 

  62. Medina, D. D.; Werner, V.; Auras, F.; Tautz, R.; Dogru, M.; Schuster, J.; Linke, S.; Döblinger, M.; Feldmann, J.; Knochel, P. et al. Oriented thin films of a benzodithiophene covalent organic framework. ACS Nano 2014, 8, 4042–4052.

    Article  CAS  Google Scholar 

  63. Sahabudeen, H.; Qi, H. Y.; Glatz, B. A.; Tranca, D.; Dong, R. H.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016, 7, 13426.

    Article  Google Scholar 

  64. Wu, Z. F.; Zhang, M.; Cao, S.; Wang, L.; Qin, Z. J.; Zhong, F. R.; Duan, H. M. Flexible all-biomass gas sensor based on doped carbon quantum dots/nonwoven cotton with discriminative function. Cellulose 2022, 29, 5817–5832.

    Article  CAS  Google Scholar 

  65. Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 2012, 41, 3210–3244.

    Article  CAS  Google Scholar 

  66. Li, G. L.; Kong, W. H.; Zhao, M.; Lu, S. M.; Gong, P. W.; Chen, G.; Xia, L.; Wang, H.; You, J. M.; Wu, Y. N. A fluorescence resonance energy transfer (FRET) based “n-on-on” nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening. Bionens. Bioelectron. 2016, 79, 728–735.

    Article  CAS  Google Scholar 

  67. Tang, Z. W.; Chen, H. C.; He, H. L.; Ma, C. B. Assays for alkaline phosphatase activity: Progress and prospects. TrAC-Trend. Anal. Chem. 2019, 113, 32–43.

    Article  CAS  Google Scholar 

  68. Zhang, X. L.; Li, G. L.; Wu, D.; Li, X. L.; Hu, N.; Chen, J.; Chen, G.; Wu, Y. N. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens. Bioelectron. 2019, 137, 178–198.

    Article  CAS  Google Scholar 

  69. He, Z. H.; Gong, S. D.; Cai, S. L.; Yan, Y. L.; Chen, G.; Li, X. L.; Zheng, S. R.; Fan, J.; Zhang, W. G. A benzimidazole-containing covalent organic framework-based QCM sensor for exceptional detection of CEES. Cryst. Growth Des. 2019, 19, 3543–3550.

    Article  CAS  Google Scholar 

  70. Zhang, X.; Chi, K. N.; Li, D. L.; Deng, Y.; Ma, Y. C.; Xu, Q. Q.; Hu, R.; Yang, Y. H. 2D-porphrinic covalent organic framework-based aptasensor with enhanced photoelectrochemical response for the detection of C-reactive protein. Biosens. Bioelectron. 2019, 129, 64–71.

    Article  CAS  Google Scholar 

  71. Singh, H.; Tomer, V. K.; Jena, N.; Bala, I.; Sharma, N.; Nepak, D.; De Sarkar, A.; Kailasam, K.; Pal, S. K. A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. J. Mater. Chem. A 2017, 5, 21820–21827.

    Article  CAS  Google Scholar 

  72. Franke, M. E.; Koplin, T. J.; Simon, U. Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter. Small 2006, 2, 36–50.

    Article  CAS  Google Scholar 

  73. Yamazoe, N.; Sakai, G.; Shimanoe, K. Oxide semiconductor gas sensors. Catal. Surv. from Asia 2003, 7, 63–75.

    Article  CAS  Google Scholar 

  74. Chen, S.; Zhao, P.; Jiang, L. Y.; Zhou, S. Y.; Zheng, J. L.; Luo, X. G.; Huo, D. Q.; Hou, C. J. Cu2O-mediated assembly of electrodeposition of Au nanoparticles onto 2D metal-organic framework nanosheets for real-time monitoring of hydrogen peroxide released from living cells. Anal. Bioanal. Chem. 2021, 413, 613–624.

    Article  CAS  Google Scholar 

  75. Chiu, W. T.; Chang, T. F. M.; Sone, M.; Tixier-Mita, A.; Toshiyoshi, H. Roles of TiO2 in the highly robust Au nanoparticles-TiO2 modified polyaniline electrode towards non-enzymatic sensing of glucose. Talanta 2020, 212, 120780.

    Article  CAS  Google Scholar 

  76. Sangili, A.; Sakthivel, R.; Chen, S. M. Cost-effective single-step synthesis of flower-like cerium-ruthenium-sulfide for the determination of antipsychotic drug trifluoperazine in human urine samples. Anal. Chim. Acta 2020, 1131, 35–44.

    Article  CAS  Google Scholar 

  77. Manavalan, S.; Ganesamurthi, J.; Chen, S. M.; Veerakumar, P.; Murugan, K. A robust Mn@FeNi-S/graphene oxide nanocomposite as a high-efficiency catalyst for the non-enzymatic electrochemical detection of hydrogen peroxide. Nanoscale 2020, 12, 5961–5972.

    Article  CAS  Google Scholar 

  78. Li, J.; Hu, H. F.; Li, H. Y.; Yao, C. B. Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2. J. Mater. Sci. 2017, 52, 10455–10469.

    Article  CAS  Google Scholar 

  79. Moraes, F. C.; Silva, T. A.; Cesarino, I.; Machado, S. A. S. Effect of the surface organization with carbon nanotubes on the electrochemical detection of bisphenol A. Sens. Actuators B: Chem. 2013, 177, 14–18.

    Article  CAS  Google Scholar 

  80. Wang, L.; Lu, X. P.; Wen, C. J.; Xie, Y. Z.; Miao, L. F.; Chen, S. H.; Li, H. B.; Li, P.; Song, Y. H. One-step synthesis of Pt-NiO nanoplate array/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing. J. Mater. Chem. A 2015, 3, 608–616.

    Article  CAS  Google Scholar 

  81. Wang, L. N.; Wang, N.; Wen, J. P.; Jia, Y. J.; Pan, S. S.; Xiong, H. L.; Tang, Y.; Wang, J.; Yang, X. J.; Sun, Y. Z. et al. Ultrasensitive sensing of environmental nitroaromatic contaminants on nanocomposite of Prussian blue analogues cubes grown on glucose-derived porous carbon. Chem. Eng. J. 2020, 397, 125450.

    Article  CAS  Google Scholar 

  82. Sun, Q. H.; Wu, Z. F.; Qin, Z. J.; Chen, X.; Zhang, C. C.; Cao, B. B.; Duan, H. M.; Zhang, J. A dog nose-inspired high-performance NH3 gas sensor of biomass carbon materials with a pleated structure derived from rose tea. J. Mater. Chem. A 2022, 10, 14326–14335.

    Article  CAS  Google Scholar 

  83. Shu, Y.; Lu, Q.; Yuan, F.; Tao, Q.; Jin, D. Q.; Yao, H.; Xu, Q.; Hu, X. Y. Stretchable electrochemical biosensing platform based on Ni-MOF composite/Au nanoparticle-coated carbon nanotubes for realtime monitoring of dopamine released from living cells. ACS Appl. Mater. Interfaces 2020, 12, 49480–49488.

    Article  CAS  Google Scholar 

  84. Wang, J. J.; Zhao, J. H.; Yang, J.; Cheng, J.; Tan, Y. Z.; Feng, H. H.; Li, Y. C. An electrochemical sensor based on MOF-derived NiO@ZnO hollow microspheres for isoniazid determination. Microchim. Acta 2020, 187, 380.

    Article  CAS  Google Scholar 

  85. Wang, L. Y.; Xie, Y.; Yang, Y. X.; Liang, H. H.; Wang, L.; Song, Y. H. Electroactive covalent organic frameworks/carbon nanotubes composites for electrochemical sensing. ACS Appl. Nano Mater. 2020, 3, 1412–1419.

    Article  CAS  Google Scholar 

  86. Wang, Q. Z.; Li, R.; Zhao, Y. J.; Zhe, T. T.; Bu, T.; Liu, Y. N.; Sun, X. Y.; Hu, H. F.; Zhang, M.; Zheng, X. H. et al. Surface morphology-controllable magnetic covalent organic frameworks: A novel electrocatalyst for simultaneously high-performance detection of p-nitrophenol and o-nitrophenol. Talanta 2020, 219, 121255.

    Article  CAS  Google Scholar 

  87. Li, J.; Liu, Y. L.; Zhu, X. q.; Chang, G.; He, H. p.; Zhang, X. h.; Wang, S. f. A novel electrochemical biosensor based on a doublesignal technique for d(CAG)n trinucleotide repeats. ACS Appl. Mater. Interfaces 2017, 9, 44231–44240.

    Article  CAS  Google Scholar 

  88. Dong, H.; Zhou, Y. L.; Zhao, L.; Hao, Y. Q.; Zhang, Y. T.; Ye, B. X.; Xu, M. T. Dual-response ratiometric electrochemical microsensor for effective simultaneous monitoring of hypochlorous acid and ascorbic acid in human body fluids. Anal. Chem. 2020, 92, 15079–15086.

    Article  CAS  Google Scholar 

  89. Zhang, W. Y.; Wu, Z. F.; Hu, J. D.; Cao, Y. L.; Guo, J. X.; Long, M. Q.; Duan, H. M.; Jia, D. Z. Flexible chemiresistive sensor of polyaniline coated filter paper prepared by spraying for fast and non-contact detection of nitroaromatic explosives. Sens. Actuators B: Chem. 2020, 304, 127233.

    Article  CAS  Google Scholar 

  90. Zhang, W.; Qiu, L. G.; Yuan, Y. P.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives. J. Hazard. Mater. 2012, 221–222, 147–154.

    Article  Google Scholar 

  91. Dalapati, S.; Jin, S. B.; Gao, J.; Xu, Y. H.; Nagai, A.; Jiang, D. L. An azine-linked covalent organic framework. J. Am. Chem. Soc. 2013, 135, 17310–17313.

    Article  CAS  Google Scholar 

  92. Zhang, C. L.; Zhang, S. M.; Yan, Y. H.; Xia, F.; Huang, A. N.; Xian, Y. Z. Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2,4,6-trinitrophenol. ACS Appl. Mater. Interfaces 2017, 9, 13415–13421.

    Article  CAS  Google Scholar 

  93. Rao, M. R.; Fang, Y.; De Feyter, S.; Perepichka, D. F. Conjugated covalent organic frameworks via Michael addition-elimination. J. Am. Chem. Soc. 2017, 139, 2421–2427.

    Article  CAS  Google Scholar 

  94. Jiang, S.; Meng, L. C.; Lv, M. X.; Bai, F. Y.; Tian, W. J.; Xing, Y. H. Molecular insights into multi-channel detection of nitrophenol explosives and acids in covalent organic frameworks with diverse hydrazone moieties. Micropor. Mesopor. Mater. 2023, 348, 112408.

    Article  CAS  Google Scholar 

  95. Das, P.; Mandal, S. K. A dual-functionalized, luminescent and highly crystalline covalent organic framework: Molecular decoding strategies for VOCs and ultrafast TNP sensing. J. Mater. Chem. A 2018, 6, 16246–16256.

    Article  CAS  Google Scholar 

  96. Lin, G. Q.; Ding, H. M.; Chen, R. F.; Peng, Z. K.; Wang, B. S.; Wang, C. 3D porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 8705–8709.

    Article  CAS  Google Scholar 

  97. Konvalina, G.; Haick, H. Sensors for breath testing: From nanomaterials to comprehensive disease detection. Acc. Chem. Res. 2014, 47, 66–76.

    Article  CAS  Google Scholar 

  98. Zhou, Y.; Yan, B. A responsive MOF nanocomposite for decoding volatile organic compounds. Chem. Commun. 2016, 52, 2265–2268.

    Article  CAS  Google Scholar 

  99. Xu, K.; Huang, N. Recent advances of covalent organic frameworks in chemical sensing. Chem. Res. Chin. Univ. 2022, 38, 339–349.

    Article  CAS  Google Scholar 

  100. Cao, S.; Wu, Z. F.; Sun, Q. H.; Zhang, W. Y.; Beysen, S.; Wang, S. Y.; Shaymurat, T.; Zhang, M.; Duan, H. M. Gas sensing properties of cotton-based carbon fibers and ZnO/carbon fibers regulated by changing carbonization temperatures. Sens. Actuators B: Chem. 2021, 337, 129818.

    Article  CAS  Google Scholar 

  101. Wang, Y. P.; Zhao, Z. Y.; Li, G. L.; Yan, Y.; Hao, C. A 2D covalent organic framework as a sensor for detecting formaldehyde. J. Mol. Model. 2018, 24, 153.

    Article  CAS  Google Scholar 

  102. Zhang, S. H.; Yang, Q.; Xu, X. T.; Liu, X. H.; Li, Q.; Guo, J. R.; Torad, N. L.; Alshehri, S. M.; Ahamad, T.; Hossain, S. A. et al. Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for remarkable formaldehyde sensing. Nanoscale 2020, 12, 15611–15619.

    Article  CAS  Google Scholar 

  103. Xie, Y. F.; Ding, S. Y.; Liu, J. M.; Wang, W.; Zheng, Q. Y. Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes. J. Mater. Chem. C 2015, 3, 10066–10069.

    Article  CAS  Google Scholar 

  104. Yuan, H. Y.; Li, N. X.; Linghu, J. J.; Dong, J. Q.; Wang, Y. X.; Karmakar, A.; Yuan, J. R.; Li, M. S.; Buenconsejo, P. J. S.; Liu, G. L. et al. Chip-level integration of covalent organic frameworks for trace benzene sensing. ACS Sens. 2020, 5, 1474–1481.

    Article  CAS  Google Scholar 

  105. Dalapati, S.; Jin, E. Q.; Addicoat, M.; Heine, T.; Jiang, D. L. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 2016, 138, 5797–5800.

    Article  CAS  Google Scholar 

  106. Niu, F.; Shao, Z. W.; Zhu, J. L.; Tao, L. M.; Ding, Y. Structural evolution of imine-linked covalent organic frameworks and their NH3 sensing performance. J. Mater. Chem. C 2021, 9, 8562–8569.

    Article  CAS  Google Scholar 

  107. Ahmed, S. A.; Xing, X. L.; Liao, Q. B.; Li, Z. Q.; Li, C. Y.; Xi, K.; Wang, K.; Xia, X. H. Study on ammonia content and distribution in the microenvironment based on covalent organic framework nanochannels. Anal. Chem. 2022, 94, 11224–11229.

    Article  CAS  Google Scholar 

  108. Das, G.; Garai, B.; Prakasam, T.; Benyettou, F.; Varghese, S.; Sharma, S. K.; Gándara, F.; Pasricha, R.; Baias, M.; Jagannathan, R. et al. Fluorescence turn on amine detection in a cationic covalent organic framework. Nat. Commun. 2022, 13, 3904.

    Article  CAS  Google Scholar 

  109. Cui, F. Z.; Xie, J. J.; Jiang, S. Y.; Gan, S. X.; Ma, D. L.; Liang, R. R.; Jiang, G. F.; Zhao, X. A gaseous hydrogen chloride chemosensor based on a 2D covalent organic framework. Chem. Commun. 2019, 55, 4550–4553.

    Article  CAS  Google Scholar 

  110. Guselnikova, O.; Kalachyova, Y.; Elashnikov, R.; Cieslar, M.; Kolska, Z.; Sajdl, P.; Postnikov, P.; Svorcik, V.; Lyutakov, O. Taking the power of plasmon-assisted chemistry on copper NPs: Preparation and application of COFs nanostructures for CO2 sensing in water. Micropor. Mesopor. Mater. 2020, 309, 110577.

    Article  CAS  Google Scholar 

  111. Zhao, L. M.; Liang, X.; Ni, Z. J.; Zhao, H.; Ge, B.; Li, W. Z. Covalent organic framework modified polyacrylamide electrospun nanofiber membrane as a “turn-on” fluorescent sensor for primary aliphatic amine gas. Sens. Actuators B: Chem. 2022, 366, 131988.

    Article  CAS  Google Scholar 

  112. Shao, S. F.; Xie, C. Y.; Xia, Y. X.; Zhang, L.; Zhang, J.; Wei, S.; Kim, H. W.; Kim, S. S. Highly conjugated three-dimensional van der Waals heterostructure-based nanocomposite films for ultrahigh-responsive TEA gas sensors at room temperature. J. Mater. Chem. A 2022, 10, 2995–3008.

    Article  CAS  Google Scholar 

  113. Ye, W.; Zhao, L. D.; Lin, H. Z.; Ding, L. F.; Cao, Q.; Chen, Z. K.; Wang, J.; Sun, Q. M.; He, J. H.; Lu, J. M. Halide Perovskite glues activate two-dimensional covalent organic framework crystallites for selective NO2 sensing. Nat. Commun. 2023, 14, 2133.

    Article  CAS  Google Scholar 

  114. Das, P.; Mandal, S. K. A highly emissive fluorescent Zn-MOF: Molecular decoding strategies for solvents and trace detection of dunnite in water. J. Mater. Chem. A 2018, 6, 21274–21279.

    Article  CAS  Google Scholar 

  115. Lian, X.; Yan, B. Trace detection of organophosphorus chemical warfare agents in wastewater and plants by luminescent UIO-67 (Hf) and evaluating the bioaccumulation of organophosphorus chemical warfare agents. ACS Appl. Mater. Interfaces 2018, 10, 14869–14876.

    Article  CAS  Google Scholar 

  116. Liu, Y.; Yan, X. D.; Lu, H. S.; Zhang, W. D.; Shi, Y. X.; Gu, Z. G. A three-dimensional covalent organic framework with turn-on luminescence for molecular decoding of volatile organic compounds. Sens. Actuators B: Chem. 2020, 323, 128708.

    Article  CAS  Google Scholar 

  117. Zhang, D. W.; Wang, Y. P.; Geng, W. T.; Liu, H. L. Rapid detection of tryptamine by optosensor with molecularly imprinted polymers based on carbon dots-embedded covalent-organic frameworks. Sens. Actuators B: Chem. 2019, 285, 546–552.

    Article  CAS  Google Scholar 

  118. Huang, D. L.; Liu, X. G.; Lai, C.; Qin, L.; Zhang, C.; Yi, H.; Zeng, G. M.; Li, B. S.; Deng, R.; Liu, S. Y. et al. Colorimetric determination of mercury(II) using gold nanoparticles and double ligand exchange. Microchim. Acta 2019, 186, 31.

    Article  Google Scholar 

  119. Qin, L.; Zeng, G. M.; Lai, C.; Huang, D. L.; Zhang, C.; Xu, P.; Hu, T. J.; Liu, X. G.; Cheng, M.; Liu, Y. et al. A visual application of gold nanoparticles: Simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition. Sens. Actuators B: Chem. 2017, 243, 946–954.

    Article  CAS  Google Scholar 

  120. Revesz, I. A.; Hickey, S. M.; Sweetman, M. J. Metal ion sensing with graphene quantum dots: Detection of harmful contaminants and biorelevant species. J. Mater. Chem. B 2022, 10, 4346–4362.

    Article  CAS  Google Scholar 

  121. Zheng, J. W.; Rahim, A.; Tang, J. B.; Allioux, F. M.; Kalantar-Zadeh, K. Post-transition metal electrodes for sensing heavy metal ions by stripping voltammetry. Adv. Mater. Technol. 2022, 7, 2100760.

    Article  CAS  Google Scholar 

  122. Wang, L. S.; Chen, Y. J.; Zhang, Z.; Chen, Y. L.; Deng, Q. L.; Wang, S. Bipyridine-linked three-dimensional covalent organic frameworks for fluorescence sensing of cobalt(II) at nanomole level. Microchim. Acta 2021, 188, 167.

    Article  CAS  Google Scholar 

  123. Chatterjee, S.; Lou, X. Y.; Liang, F.; Yang, Y. W. Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coordin. Chem. Rev. 2022, 459, 214461.

    Article  CAS  Google Scholar 

  124. Fu, F. L.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 2011, 92, 407–418.

    Article  CAS  Google Scholar 

  125. Olivares, M.; Uauy, R. Copper as an essential nutrient. Am. J. Clin. Nutr. 1996, 63, 791S–796S.

    Article  CAS  Google Scholar 

  126. Cui, C.; Wang, Q. B.; Xin, C. H.; Liu, Q. Y.; Deng, X.; Liu, T. T.; Xu, X. H.; Zhang, X. M. Covalent organic framework with bidentate ligand sites as reliable fluorescent sensor for Cu2+. Micropor. Mesopor. Mater. 2020, 299, 110122.

    Article  CAS  Google Scholar 

  127. Ahmed, L. R.; EL-Mahdy, A. F. M.; Pan, C. T.; Kuo, S. W. A water-soluble copper-immobilized covalent organic framework functioning as an “off-on” fluorescent sensor for amino acids. Mater. Adv. 2021, 2, 4617–4629.

    Article  CAS  Google Scholar 

  128. Zhang, S. Y.; Tang, X. H.; Yan, Y. L.; Li, S. Q.; Zheng, S. R.; Fan, J.; Li, X. L.; Zhang, W. G.; Cai, S. L. Facile and site-selective synthesis of an amine-functionalized covalent organic framework. ACS Macro Lett. 2021, 10, 1590–1596.

    Article  CAS  Google Scholar 

  129. Dong, Z. Y.; Yang, Y. X.; Cai, X. T.; Tang, X. H.; Yan, Y. L.; Zheng, S. R.; Zhang, W. G.; Cai, S. L.; Fan, J. Site-selective synthesis of an amine-functionalized β-ketoenamine-linked covalent organic framework for improved detection and removal of Cu2+ ion from water. J. Solid State Chem. 2022, 316, 123644.

    Article  CAS  Google Scholar 

  130. Jia, Y. H.; Wang, J. M.; Zhao, L. M.; Yan, B. A double responsive fluorescent platform for sensing heavy metal ions based on a dual-emitting fluorescent covalent organic framework hydrogel film. Dalton. Trans. 2022, 51, 14352–14358.

    Article  CAS  Google Scholar 

  131. Li, Y. J.; Chen, M. H.; Han, Y. N.; Feng, Y. Q.; Zhang, Z. J.; Zhang, B. Fabrication of a new corrole-based covalent organic framework as a highly efficient and selective chemosensor for heavy metal ions. Chem. Mater. 2020, 32, 2532–2540.

    Article  CAS  Google Scholar 

  132. Sahoo, S. K.; Sharma, D.; Bera, R. K.; Crisponi, G.; Callan, J. F. Iron(III) selective molecular and supramolecular fluorescent probes. Chem. Soc. Rev. 2012, 41, 7195–7227.

    Article  CAS  Google Scholar 

  133. Zhang, C. Q.; Yan, Y.; Pan, Q. H.; Sun, L. B.; He, H. M.; Liu, Y. L.; Liang, Z. Q.; Li, J. Y. A microporous lanthanum metal-organic framework as a bi-functional chemosensor for the detection of picric acid and Fe3+ ions. Dalton. Trans 2015, 44, 13340–13346.

    Article  CAS  Google Scholar 

  134. Wang, T.; Xue, R.; Chen, H. Q.; Shi, P. L.; Lei, X.; Wei, Y. L.; Guo, H.; Yang, W. Preparation of two new polyimide bond linked porous covalent organic frameworks and their fluorescence sensing application for sensitive and selective determination of Fe3+. New J. Chem. 2017, 41, 14272–14278.

    Article  CAS  Google Scholar 

  135. Wang, L. L.; Yang, C. X.; Yan, X. P. Exploring fluorescent covalent organic frameworks for selective sensing of Fe3+. Sri. China Chem. 2018, 61, 1470–1474.

    Article  CAS  Google Scholar 

  136. Chen, G.; Lan, H. H.; Cai, S. L.; Sun, B.; Li, X. L.; He, Z. H.; Zheng, S. R.; Fan, J.; Liu, Y.; Zhang, W. G. Stable hydrazone-linked covalent organic frameworks containing O,N,O’-chelating sites for Fe(III) detection in water. ACS Appl. Mater. Interfaces 2019, 11, 12830–12837.

    Article  CAS  Google Scholar 

  137. Fang, X.; Liu, Y.; Han, W. K.; Yan, X. D.; Shi, Y. X.; Chen, L. H.; Jiang, Y. Q.; Zhang, J. W.; Gu, Z. G. A luminescent covalent organic framework with recognition traps for nitro-pesticides detection, pH sensing and metal ions identification. Dyes Pigments 2022, 205, 110507.

    Article  CAS  Google Scholar 

  138. Li, D. M.; Zhang, S. Y.; Wan, J. Y.; Zhang, W. Q.; Yan, Y. L.; Tang, X. H.; Zheng, S. R.; Cai, S. L.; Zhang, W. G. A new hydrazone-linked covalent organic framework for Fe(III) detection by fluorescence and QCM technologies. CrystEngComm 2021, 23, 3594–3601.

    Article  CAS  Google Scholar 

  139. Gong, W.; Liu, C. Y.; Shi, H. L.; Yin, M. X.; Li, W. J.; Song, Q. B.; Dong, Y. J.; Zhang, C. Dual-function fluorescent hydrazone-linked covalent organic frameworks for acid vapor sensing and iron(III) ion sensing. J. Mater. Chem. C 2022, 10, 3553–3559.

    Article  CAS  Google Scholar 

  140. Xiu, J.; Li, C.; Wang, G. Study on colorimetric sensing performance of covalent organic framework for highly selective and sensitive detection of Fe2+ and Fe3+ ions. J. Mol. Struct. 2023, 1276, 134779.

    Article  CAS  Google Scholar 

  141. Zhou, S. X.; Wang, X. F.; Cao, X. D.; Ning, J.; Hao, L. Covalent organic frameworks constructed step by step using a [(C3 + C2) + C2] strategy toward fluorescence detection of Fe3+. Chem. Commun. 2022, 58, 12240–12243.

    Article  CAS  Google Scholar 

  142. Xia, M.; Shen, T. Y.; Li, C. K.; Fan, R. M.; Feng, L. J.; Chen, Q. 2D COFs paper composites fabricated by the in situ growth for visual detection of target metal ions. Mater. Chem. Phys. 2022, 286, 126208.

    Article  CAS  Google Scholar 

  143. Asadi, P.; Falsafin, M.; Dinari, M. Construction of new covalent organic frameworks with benzimidazole moiety as Fe3+ selective fluorescence chemosensors. J. Mol. Struct. 2021, 1227, 129546.

    Article  CAS  Google Scholar 

  144. You, J.; Kong, Q. Q.; Zhang, C. L.; Xian, Y. Z. Designed Synthesis of a sp2 carbon-conjugated fluorescent covalent organic framework for selective detection of Fe3+. Anal. Methods 2022, 14, 2389–2395.

    Article  CAS  Google Scholar 

  145. Cui, D.; Ding, X. S.; Xie, W.; Xu, G. J.; Su, Z. M.; Xu, Y. H.; Xie, Y. Z. A tetraphenylethylene-based covalent organic framework for waste gas adsorption and highly selective detection of Fe3+. CrystEngComm 2021, 23, 5569–5574.

    Article  CAS  Google Scholar 

  146. Carmouche, J. J.; Puzas, J. E.; Zhang, X. P.; Tiyapatanaputi, P.; Cory-Slechta, D. A.; Gelein, R.; Zuscik, M.; Rosier, R. N.; Boyce, B. F.; O’Keefe, R. J. et al. Lead exposure inhibits fracture healing and is associated with increased chondrogenesis, delay in cartilage mineralization, and a decrease in osteoprogenitor frequency. Environ. Health Persp. 2005, 113, 749–755.

    Article  CAS  Google Scholar 

  147. Behbahani, M.; Bagheri, A.; Taghizadeh, M.; Salarian, M.; Sadeghi, O.; Adlnasab, L.; Jalali, K. Synthesis and characterisation of nano structure lead(II) ion-imprinted polymer as a new sorbent for selective extraction and preconcentration of ultra trace amounts of lead ions from vegetables, rice, and fish samples. Food Chem. 2013, 138, 2050–2056.

    Article  CAS  Google Scholar 

  148. Zhang, T.; Gao, C. W.; Huang, W.; Chen, Y. L.; Wang, Y.; Wang, J. M. Covalent organic framework as a novel electrochemical platform for highly sensitive and stable detection of lead. Talanta 2018, 188, 578–583.

    Article  CAS  Google Scholar 

  149. Shi, X. F.; Yao, Y. J.; Xu, Y. L.; Liu, K.; Zhu, G. S.; Chi, L. F.; Lu, G. Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation. ACS Appl. Mater. Interfaces 2017, 9, 7481–7488.

    Article  CAS  Google Scholar 

  150. Wang, R. Y.; Ji, W. H.; Huang, L. Q.; Guo, L. P.; Wang, X. Electrochemical determination of lead(II) in environmental waters using a sulfydryl modified covalent organic framework by square wave anodic stripping voltammetry (SWASV). Anal. Lett. 2019, 52, 1757–1770.

    Article  CAS  Google Scholar 

  151. Zhao, C. R.; Zhang, L. Y.; Wang, Q.; Zhang, L. T.; Zhu, P. H.; Yu, J. H.; Zhang, Y. Porphyrin-based covalent organic framework thin films as cathodic materials for “on-off-on” photoelectrochemical sensing of lead ions. ACS Appl. Mater. Interfaces 2021, 13, 20397–20404.

    Article  CAS  Google Scholar 

  152. Zhang, N.; Wei, B. X.; Ma, T. T.; Tian, Y. Y.; Wang, G. A carbazole-grafted covalent organic framework as turn-on fluorescence chemosensor for recognition and detection of Pb2+ ions with high selectivity and sensitivity. J. Mater. Sci. 2021, 56, 11789–11800.

    Article  CAS  Google Scholar 

  153. Pan, F.; Tong, C. Y.; Wang, Z. Y.; Han, H. T.; Liu, P.; Pan, D. W.; Zhu, R. L. Nanocomposite based on graphene and intercalated covalent organic frameworks with hydrosulphonyl groups for electrochemical determination of heavy metal ions. Microchim. Acta 2021, 188, 295.

    Article  CAS  Google Scholar 

  154. Ding, S. Y.; Dong, M.; Wang, Y. W.; Chen, Y. T.; Wang, H. Z.; Su, C. Y.; Wang, W. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J. Am. Chem. Soc. 2016, 138, 3031–3037.

    Article  CAS  Google Scholar 

  155. Li, D. M.; Li, S. Q.; Huang, J. Y.; Yan, Y. L.; Zhang, S. Y.; Tang, X. H.; Fan, J.; Zheng, S. R.; Zhang, W. G.; Cai, S. L. A recyclable bipyridine-containing covalent organic framework-based QCM sensor for detection of Hg(II) ion in aqueous solution. J. Solid State Chem. 2021, 302, 122421.

    Article  CAS  Google Scholar 

  156. Yin, Y.; Liu, G. Application of synthesized 2,5-bis (allyloxy) terephthalohydrazide functionalized covalent organic framework material as a fluorescence probe for selective detection of mercury(II). Mater. Today Commun. 2021, 27, 102440.

    Article  CAS  Google Scholar 

  157. Guo, L. L.; Song, Y. H.; Cai, K. Y.; Wang, L. “On-off” ratiometric fluorescent detection of Hg2+ based on N-doped carbon dots-rhodamine B@TAPT-DHTA-COF. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2020, 227, 117703.

    Article  CAS  Google Scholar 

  158. Panda, A.; Yang, Y. Q.; Venkateswarlu, S.; Son, Y.; Bae, T. H.; Yoon, M. Highly durable covalent organic framework for the simultaneous ultrasensitive detection and removal of noxious Hg2+. Micropor. Mesopor. Mater. 2020, 306, 110399.

    Article  CAS  Google Scholar 

  159. Shamsipur, M.; Sadeghi, M.; Alizadeh, K.; Sharghi, H.; Khalifeh, R. An efficient and selective flourescent optode membrane based on 7-[(5-chloro-8-hydroxy-7-quinolinyl) methyl]-5,6,7,8,9,10-hexahydro-2H-1,13,4,7,10-benzodioxatriazacyclopentadecine-3,11(4H,12H)-dione as a novel fluoroionophore for determination of cobalt(II) ions. Anal. Chim. Acta 2008, 630, 57–66.

    Article  CAS  Google Scholar 

  160. Wang, H. X.; Wang, D. L.; Wang, Q.; Li, X. Y.; Schalley, C. A. Nickel(II) and iron(III) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide. Org. Biomol. Chem. 2010, 8, 1017–1026.

    Article  CAS  Google Scholar 

  161. Erulas, F. A. Sensitive determination of nickel at trace levels in surface water samples by slotted quartz tube flame atomic absorption spectrometry after switchable solvent liquid-phase microextraction. Environ. Monit. Assess. 2020, 192, 272.

    Article  CAS  Google Scholar 

  162. Chen, Y. J.; Sun, R.; Zhu, W. H.; Zhang, Z.; Chen, Y. L.; Wang, S.; Deng, Q. L. Desirability of position 2,2′-bipyridine group into COFs for the fluorescence sensing of Ni(II). Sens. Actuators B: Chem. 2021, 344, 130216.

    Article  CAS  Google Scholar 

  163. Cui, W. R.; Zhang, C. R.; Jiang, W.; Li, F. F.; Liang, R. P.; Liu, J. W.; Qiu, J. D. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat. Commun. 2020, 11, 436.

    Article  CAS  Google Scholar 

  164. Niu, J. J.; Yan, W. J.; Du, J.; Hao, X. G.; Wang, F. B.; Wang, Z. D.; Guan, G. Q. An electrically switched ion exchange film with molecular coupling synergistically-driven ability for recovery of Ag+ ions from wastewater. Chem. Eng. J. 2020, 389, 124498.

    Article  CAS  Google Scholar 

  165. Yin, X. C.; Shao, P. H.; Ding, L.; Xi, Y.; Zhang, K.; Yang, L. M.; Shi, H.; Luo, X. B. Protonation of rhodanine polymers for enhancing the capture and recovery of Ag+ from highly acidic wastewater. Environ. Sci.: Nano 2019, 6, 3307–3315.

    CAS  Google Scholar 

  166. Zhang, D.; Yang, R. T. Superior silver sorbents for removing 2-vinyl thiophene from styrene by π-complexation. Ind. Eng. Chem. Res. 2019, 58, 1769–1772.

    Article  CAS  Google Scholar 

  167. Zhang, Y. B.; Wang, Q.; Li, Y. Q.; Hu, R. G. Bithiophene-based COFs for silver ions detection and removal. Micropor. Mesopor. Mater. 2022, 346, 112289.

    Article  CAS  Google Scholar 

  168. Li, B. W.; Zeng, H. C. Minimalization of metallic Pd formation in Suzuki reaction with a solid-state organometallic catalyst. ACS Appl. Mater. Interfaces 2020, 12, 33827–33837.

    Article  CAS  Google Scholar 

  169. Garrett, C. E.; Prasad, K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv. Synth. Catal. 2004, 346, 889–900.

    Article  CAS  Google Scholar 

  170. Lu, Y.; Liang, Y.; Zhao, Y. X.; Xia, M.; Liu, X.; Shen, T. Y.; Feng, L. J.; Yuan, N.; Chen, Q. Fluorescent test paper via the in situ growth of COFs for rapid and convenient detection of Pd(II) ions. ACS Appl. Mater. Interfaces 2021, 13, 1644–1650.

    Article  CAS  Google Scholar 

  171. Yue, J. Y.; Ding, X. L.; Wang, Y. T.; Wen, Y. X.; Yang, P.; Ma, Y.; Tang, B. Dual functional sp2 carbon-conjugated covalent organic frameworks for fluorescence sensing and effective removal and recovery of Pd2+ ions. J. Mater. Chem. A 2021, 9, 26861–26866.

    Article  CAS  Google Scholar 

  172. Ju, P. Y.; Su, Q.; Liu, Z. Q.; Li, X. D.; Guo, B. X.; Liu, W. T.; Li, G. H.; Wu, Q. L. A Salen-based covalent organic polymer as highly selective and sensitive fluorescent sensor for detection of Al3+, Fe3+ and Cu2+ ions. J. Mater. Sci. 2019, 54, 851–861.

    Article  CAS  Google Scholar 

  173. Cannon, J. R.; Greenamyre, J. T. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol. Sci. 2011, 124, 225–250.

    Article  CAS  Google Scholar 

  174. Xiu, J.; Zhang, N.; Li, C.; Salah, A.; Wang, G. Tetraphenylethylene-based covalent organic frameworks as fluorescent chemosensor for rapid sensitive recognition and selective “turn-on” fluorescence detection of trace-level Al3+ ion. Micropor. Mesopor. Mater. 2021, 316, 110979.

    Article  CAS  Google Scholar 

  175. Afshari, M.; Dinari, M.; Farrokhpour, H.; Zamora, F. Imine-linked covalent organic framework with a naphthalene moiety as a sensitive phosphate ion sensing. ACS Appl. Mater. Interfaces 2022, 14, 22398–22406.

    Article  CAS  Google Scholar 

  176. Prasad, A. S. Impact of the discovery of human zinc deficiency on health. J. Trace Elem. Med. Biol. 2014, 28, 357–363.

    Article  CAS  Google Scholar 

  177. Sanusi, K. O.; Ibrahim, K. G.; Abubakar, B.; Malami, I.; Bello, M. B.; Imam, M. U.; Abubakar, M. B. Effect of maternal zinc deficiency on offspring health: The epigenetic impact. J. Trace Elem. Med. Biol. 2021, 65, 126731.

    Article  CAS  Google Scholar 

  178. Kan, X. Q.; Dong, Y. Q.; Feng, L.; Zhou, M.; Hou, H. B. Contamination and health risk assessment of heavy metals in China’s lead-zinc mine tailings: A meta-analysis. Chemosphere 2021, 267, 128909.

    Article  CAS  Google Scholar 

  179. Yin, Y.; Liu, G. Application of a novel hydroxyl functionalized fluorescent covalent organic framework for turn-off ultrasensitive Zn2+ ion detection. Anal. Methods 2022, 14, 1988–1995.

    Article  CAS  Google Scholar 

  180. Wang, P. Y.; Kang, M. M.; Sun, S. M.; Liu, Q.; Zhang, Z. H.; Fang, S. M. Imine-linked covalent organic framework on surface for biosensor. Chin. J. Chem. 2014, 32, 838–843.

    Article  CAS  Google Scholar 

  181. Zhang, T.; Ma, N.; Ali, A.; Wei, Q.; Wu, D.; Ren, X. Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosens. Bioelectron. 2018, 119, 176–181.

    Article  CAS  Google Scholar 

  182. Song, Z. P.; Song, J.; Gao, F.; Chen, X. P.; Wang, Q. H.; Zhao, Y. N.; Huang, X. G.; Yang, C. Y.; Wang, Q. X. Novel electroactive ferrocene-based covalent organic frameworks towards electrochemical label-free aptasensors for the detection of cardiac troponin I. Sens. Actuators B: Chem. 2022, 368, 132205.

    Article  CAS  Google Scholar 

  183. Feng, S. N.; Yan, M. X.; Xue, Y.; Huang, J. S.; Yang, X. R. Electrochemical immunosensor for cardiac troponin I detection based on covalent organic framework and enzyme-catalyzed signal amplification. Anal. Chem. 2021, 93, 13572–13579.

    Article  CAS  Google Scholar 

  184. Wang, P.; Zhou, F.; Zhang, C.; Yin, S. Y.; Teng, L. L.; Chen, L. L.; Hu, X. X.; Liu, H. W.; Yin, X.; Zhang, X. B. Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chem. Sci. 2018, 9, 8402–8408.

    Article  CAS  Google Scholar 

  185. Yan, X.; Song, Y. P.; Liu, J. M.; Zhou, N.; Zhang, C. L.; He, L. H.; Zhang, Z. H.; Liu, Z. Y. Two-dimensional porphyrin-based covalent organic framework: A novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosens. Bioelectron. 2019, 126, 734–742.

    Article  CAS  Google Scholar 

  186. Wang, M. H.; Zhu, L.; Zhang, S.; Lou, Y. F.; Zhao, S. R.; Tan, Q.; He, L. H.; Du, M. A copper(II) phthalocyanine-based metallo-covalent organic framework decorated with silver nanoparticle for sensitively detecting nitric oxide released from cancer cells. Sens. Actuators B: Chem. 2021, 338, 129826.

    Article  CAS  Google Scholar 

  187. Zhu, P. H.; Li, S. S.; Zhou, S.; Ren, N.; Ge, S. G.; Zhang, Y.; Wang, Y. F.; Yu, J. H. In situ grown COFs on 3D strutted graphene aerogel for electrochemical detection of NO released from living cells. Chem. Eng. J. 2021, 420, 127559.

    Article  CAS  Google Scholar 

  188. Cheng, J. M.; Hu, K.; Liu, Q. R.; Liu, Y. J.; Yang, H. X.; Kong, J. M. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti3C2Tx-MXene as enhancer and covalent organic frameworks as labels. Anal. Bioanal. Chem. 2021, 413, 2543–2551.

    Article  CAS  Google Scholar 

  189. Guo, L.; Mu, Z. D.; Yan, B.; Wang, J.; Zhou, J.; Bai, L. J. A novel electrochemical biosensor for sensitive detection of non-small cell lung cancer ctDNA using NG-PEI-COFTAPB-TFPB as sensing platform and Fe-MOF for signal enhancement. Sens. Actuators B: Chem. 2022, 350, 130874.

    Article  CAS  Google Scholar 

  190. Wang, M. H.; Lin, Y. X.; Lu, J. Y.; Sun, Z. W.; Deng, Y.; Wang, L.; Yi, Y. X.; Li, J. L.; Yang, J.; Li, G. X. Visual naked-eye detection of SARS-CoV-2 RNA based on covalent organic framework capsules. Chem. Eng. J. 2022, 429, 132332.

    Article  CAS  Google Scholar 

  191. Liang, D.; Zhang, X. Y.; Wang, Y.; Huo, T. T.; Qian, M.; Xie, Y. B.; Li, W. S.; Yu, Y. Q.; Shi, W.; Liu, Q. Q. et al. Magnetic covalent organic framework nanospheres-based miRNA biosensor for sensitive glioma detection. Bioact. Mater. 2022, 14, 145–151.

    CAS  Google Scholar 

  192. Chen, Y. N.; Wang, S. L.; Ren, J. J.; Zhao, H. Y.; Cui, M.; Li, N.; Li, M.; Zhang, C. Electrocatalysis of copper sulfide nanoparticle-engineered covalent organic frameworks for ratiometric electrochemical detection of amyloid-β oligomer. Anal. Chem. 2022, 94, 11201–11208.

    Article  CAS  Google Scholar 

  193. Wang, M. H.; Pan, Y. H.; Wu, S.; Sun, Z. W.; Wang, L.; Yang, J.; Yin, Y. M.; Li, G. X. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks. Biosens. Bioelectron. 2020, 169, 112638.

    Article  CAS  Google Scholar 

  194. Han, Y. W.; Lu, J. Y.; Wang, M. H.; Sun, C. X.; Yang, J.; Li, G. X. An electrochemical biosensor for exosome detection based on covalent organic frameworks conjugated with DNA and horseradish peroxidase. J. ElectroAnal. Chem. 2022, 920, 116576.

    Article  CAS  Google Scholar 

  195. Cui, J.; Kan, L.; Li, Z. Z.; Yang, L. Y.; Wang, M. H.; He, L. H.; Lou, Y. F.; Xue, Y. L.; Zhang, Z. H. Porphyrin-based covalent organic framework as bioplatfrom for detection of vascular endothelial growth factor 165 through fluorescence resonance energy transfer. Talanta 2021, 228, 122060.

    Article  CAS  Google Scholar 

  196. Yan, X. S.; Li, H. K.; Yin, T. Y.; Jie, G. F.; Zhou, H. Photoelectrochemical biosensing platform based on in situ generated ultrathin covalent organic framework film and AgInS2 QDs for dual target detection of HIV and CEA. Biosens. Bioelectron. 2022, 217, 114694.

    Article  CAS  Google Scholar 

  197. Wang, J. M.; Yan, B. Improving covalent organic frameworks fluorescence by triethylamine pinpoint surgery as selective biomarker sensor for diabetes mellitus diagnosis. Anal. Chem. 2019, 91, 13183–13190.

    Article  CAS  Google Scholar 

  198. Zhao, X.; Guo, H.; Xue, R.; Wang, M. Y.; Guan, Q. X.; Fan, T.; Yang, W. H.; Yang, W. Electrochemical sensing and simultaneous determination of guanine and adenine based on covalent organic frameworks/NH2-rG/MoS2 modified glassy carbon electrode. Microchem. J. 2021, 160, 105759.

    Article  CAS  Google Scholar 

  199. Zheng, J.; Zhao, H.; Ning, G. B.; Sun, W. J.; Wang, L.; Liang, H.; Xu, H. B.; He, C. Y.; Li, C. P. A novel affinity peptide-antibody sandwich electrochemical biosensor for PSA based on the signal amplification of MnO2-functionalized covalent organic framework. Talanta 2021, 233, 122520.

    Article  CAS  Google Scholar 

  200. Lu, X.; Li, S. N.; Guo, W.; Zhang, F.; Qu, F. A covalent organic polymer-TiO2/Ti3C2 heterostructure as nonenzymatic biosensor for voltammetric detection of dopamine and uric acid. Microchim. Acta 2021, 188, 95.

    Article  CAS  Google Scholar 

  201. Yang, L.; Li, M. Y.; Kuang, L. J.; Li, Y. H.; Chen, L. L.; Lin, C. H.; Wang, L.; Song, Y. H. Benzotrithiophene-based covalent organic frameworks for real-time visual onsite assays of enrofloxacin. Biosens. Bioelectron. 2022, 214, 114527.

    Article  CAS  Google Scholar 

  202. Liu, X. Y.; Wang, F.; Meng, Y.; Zhao, L. P.; Shi, W. J.; Wang, X.; He, Z. K.; Chao, J.; Li, C. L. Electrochemical/visual microfluidic detection with a covalent organic framework supported platinum nanozyme-based device for early diagnosis of pheochromocytoma. Biosens. Bioelectron. 2022, 207, 114208.

    Article  CAS  Google Scholar 

  203. Wang, J. N.; Yang, X.; Wei, T. X.; Bao, J. C.; Zhu, Q. S.; Dai, Z. H. Fe-porphyrin-based covalent organic framework as a novel peroxidase mimic for a one-pot glucose colorimetric assay. ACS Appl. Bio Mater. 2018, 1, 382–388.

    Article  CAS  Google Scholar 

  204. Xie, Y.; Xu, M. L.; Wang, L.; Liang, H. H.; Wang, L. Y.; Song, Y. H. Iron-porphyrin-based covalent-organic frameworks for electrochemical sensing H2O2 and pH. Mater. Sci. Eng. C. 2020, 112, 110864.

    Article  CAS  Google Scholar 

  205. He, N.; Zhu, X. L.; Liu, F. X.; Yu, R.; Xue, Z. H.; Liu, X. H. Rational design of FeS2-encapsulated covalent organic frameworks as stable and reusable nanozyme for dual-signal detection glutathione in cell lysates. Chem. Eng. J. 2022, 445, 136543.

    Article  CAS  Google Scholar 

  206. Yue, J. Y.; Ding, X. L.; Wang, L.; Yang, R.; Bi, J. S.; Song, Y. W.; Yang, P.; Ma, Y.; Tang, B. Novel enzyme-functionalized covalent organic frameworks for the colorimetric sensing of glucose in body fluids and drinks. Mater. Chem. Front. 2021, 5, 3859–3866.

    Article  CAS  Google Scholar 

  207. Liang, H. H.; Wang, L. Y.; Yang, Y. X.; Song, Y. H.; Wang, L. A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework. Biosens. Bioelectron. 2021, 193, 113553.

    Article  CAS  Google Scholar 

  208. Yildirim, O.; Derkus, B. Triazine-based 2D covalent organic frameworks improve the electrochemical performance of enzymatic biosensors. J. Mater. Sci. 2020, 55, 3034–3044.

    Article  CAS  Google Scholar 

  209. Guo, L. L.; Wang, Y. Y.; Pang, Y. H.; Shen, X. F.; Yang, N. C.; Ma, Y.; Zhang, Y. In situ growth of covalent organic frameworks TpBD on electrode for electrochemical determination of aflatoxin M1. J. Electroanal. Chem. 2021, 881, 114931.

    Article  CAS  Google Scholar 

  210. Wang, L. J.; Gao, W. L.; Ng, S.; Pumera, M. Chiral protein-covalent organic framework 3D-printed structures as chiral biosensors. Anal. Chem. 2021, 93, 5277–5283.

    Article  CAS  Google Scholar 

  211. Chen, R. Y.; Kan, L.; Xu, M. Y.; Zhang, G. Y.; Wang, M. H.; Cui, J.; Zhou, N.; He, L. H. Impedimetric aptasensor based on porphyrin-based covalent-organic framework for determination of diethylstilbestrol. Microchim. Acta 2022, 189, 229.

    Article  CAS  Google Scholar 

  212. Liu, B. Q.; Guo, H.; Sun, L.; Pan, Z. L.; Peng, L. P.; Wang, M. Y.; Wu, N.; Chen, Y.; Wei, X. Q.; Yang, W. Electrochemical sensor based on covalent organic frameworks/MWCNT for simultaneous detection of catechol and hydroquinone. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 639, 128335.

    Article  CAS  Google Scholar 

  213. Hao, Q.; Ren, X. R.; Chen, Y. C.; Zhao, C.; Xu, J. Y.; Wang, D.; Liu, H. A sweat-responsive covalent organic framework film for material-based liveness detection and sweat pore analysis. Nat. Commun. 2023, 14, 578.

    Article  CAS  Google Scholar 

  214. Huang, W.; Jiang, Y.; Li, X.; Li, X. J.; Wang, J. Y.; Wu, Q.; Liu, X. K. Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures. ACS Appl. Mater. Interfaces 2013, 5, 8845–8849.

    Article  CAS  Google Scholar 

  215. Zhang, Y.; Zhang, W. X.; Li, Q. Z.; Chen, C.; Zhang, Z. C. Design and fabrication of a novel humidity sensor based on ionic covalent organic framework. Sens. Actuators B: Chem. 2020, 324, 128733.

    Article  CAS  Google Scholar 

  216. Jhulki, S.; Evans, A. M.; Hao, X. L.; Cooper, M. W.; Feriante, C. H.; Leisen, J.; Li, H.; Lam, D.; Hersam, M. C.; Barlow, S. Humidity sensing through reversible isomerization of a covalent organic framework. J. Am. Chem. Soc. 2020, 142, 783–791.

    Article  CAS  Google Scholar 

  217. Jiang, S.; Meng, L. C.; Ma, W. Y.; Pan, G. C.; Zhang, W.; Zou, Y. C.; Liu, L. J.; Xu, B.; Tian, W. J. Dual-functional two-dimensional covalent organic frameworks for water sensing and harvesting. Mater. Chem. Front. 2021, 5, 4193–4201.

    Article  CAS  Google Scholar 

  218. Zhang, Y. W.; Shen, X. C.; Feng, X.; Xia, H.; Mu, Y.; Liu, X. M. Covalent organic frameworks as pH responsive signaling scaffolds. Chem. Commun. 2016, 52, 11088–11091.

    Article  CAS  Google Scholar 

  219. Chen, L.; He, L. W.; Ma, F. Y.; Liu, W.; Wang, Y. X.; Silver, M. A.; Chen, L. H.; Zhu, L.; Gui, D. X.; Diwu, J. et al. Covalent organic framework functionalized with 8-hydroxyquinoline as a dual-mode fluorescent and colorimetric pH sensor. ACS Appl. Mater. Interfaces 2018, 10, 15364–15368.

    Article  CAS  Google Scholar 

  220. Das, P.; Mandal, S. K. Flexible and semi-flexible amide-hydrazide decorated fluorescent covalent organic frameworks as on-off pH responsive proton scavengers. ACS Appl. Mater. Interfaces 2021, 13, 14160–14168.

    Article  CAS  Google Scholar 

  221. Jia, Y. T.; Shen, Y. T.; Zhu, Y. Y.; Wang, J. Covalent organic framework-based fluorescent nanoprobe for intracellular pH sensing and imaging. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2022, 272, 121002.

    Article  CAS  Google Scholar 

  222. Ren, X. R.; Bai, B.; Zhang, Q. S.; Hao, Q.; Guo, Y. L.; Wan, L. J.; Wang, D. Constructing stable chromenoquinoline-based covalent organic frameworks via intramolecular povarov reaction. J. Am. Chem. Soc. 2022, 144, 2488–2494.

    Article  CAS  Google Scholar 

  223. Yue, J. Y.; Song, L. P.; Ding, X. L.; Wang, Y. T.; Yang, P.; Ma, Y.; Tang, B. Ratiometric fluorescent pH sensor based on a tunable multivariate covalent organic framework. Anal. Chem. 2022, 94, 11062–11069.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 21964016), Xinjiang National Science Fund for Distinguished Young Scholars (No. 2022D01E37), Key programs of Xinjiang Natural Science Foundation (No. 2022B02051), and Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region (No. 2020D14038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qihua Sun, Ning Tian or Zhaofeng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Liu, S., Sun, Q. et al. Synthesis of covalent organic framework materials and their application in the field of sensing. Nano Res. 17, 162–195 (2024). https://doi.org/10.1007/s12274-023-6027-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6027-x

Keywords

Navigation