Skip to main content
Log in

Two-dimensional atomically thin Pt layers on MXenes: The role of electronic effects during catalytic dehydrogenation of ethane and propane

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Atomically thin Pt nanolayers were synthesized on the surface of Mo2TiC2 MXenes and used for the catalytic dehydrogenation of ethane and propane into ethylene and propylene, two important chemicals for the petrochemical industry. As compared with Pt nanoparticles, the atomically thin Pt nanolayer catalyst showed superior coke-resistance (no deactivation for 24 h), high activity (turnover frequencies (TOFs) of 0.4–1.2 s−1), and selectivity (> 95%) toward ethylene and propylene. The unique Pt nanolayer has a similar geometric surface to Pt nanoparticles, enabling the investigations of the electronic effect on the catalytic performance, where the geometric effect is negligible. It is found that the electronic effect plays a critical role in dehydrogenative product selectivity and catalyst stability. The metal–support interaction is found dependent on the substrate and metal components, providing wide opportunities to explore high-performance MXene-supported metallic catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613–10653.

    Article  CAS  PubMed  Google Scholar 

  2. Ye, G. H.; Wang, H. Z.; Duan, X. Z.; Sui, Z.; Zhou, X. G.; Coppens, M. O.; Yuan, W. K. Pore network modeling of catalyst deactivation by coking, from single site to particle, during propane dehydrogenation. AIChE J. 2019, 65, 140–150.

    Article  ADS  CAS  Google Scholar 

  3. Aly, M.; Fornero, E. L.; Leon-Garzon, A. R.; Galvita, V. V.; Saeys, M. Effect of boron promotion on coke formation during propane dehydrogenation over Pt/γ-Al2O3 catalysts. ACS Catal. 2020, 10, 5208–5216.

    Article  CAS  Google Scholar 

  4. Lian, Z.; Si, C. W.; Jan, F.; Zhi, S. K.; Li, B. Coke Deposition on Pt-based catalysts in propane direct dehydrogenation: Kinetics, suppression, and elimination. ACS Catal. 2021, 11, 9279–9292.

    Article  CAS  Google Scholar 

  5. Zhang, Y.; Wang, B. J.; Fan, M. H.; Ling, L. X.; Zhang, R. G. Ethane dehydrogenation over the g-C3N4 supported metal single-atom catalysts to enhance reactivity and coking-resistance ability. Nano Res. 2023, 16, 6142–6152.

    Article  ADS  CAS  Google Scholar 

  6. Thakur, R.; VahidMohammadi, A.; Smith, J.; Hoffman, M.; Moncada, J.; Beidaghi, M.; Carrero, C. A. Insights into the genesis of a selective and coke-resistant MXene-based catalyst for the dry reforming of methane. ACS Catal. 2020, 10, 5124–5134.

    Article  CAS  Google Scholar 

  7. Li, Y. Y.; Zhang, Y. S.; Qian, K.; Huang, W. X. Metal-support interactions in metal/oxide catalysts and oxide-metal interactions in oxide/metal inverse catalysts. ACS Catal. 2022, 12, 1268–1287.

    Article  Google Scholar 

  8. Pu, T. C.; Zhang, W. H.; Zhu, M. H. Engineering heterogeneous catalysis with strong metal–support interactions: Characterization, theory and manipulation. Angew. Chem., Int. Ed. 2023, 62, e202212278.

    Article  CAS  Google Scholar 

  9. Gao, X. F.; Xu, W. H.; Li, X.; Cen, J. J.; Xu, Y. Z.; Lin, L. L.; Yao, S. Y. Nonxidative dehydrogenation of propane to propene over Pt-Sn/Al2O3 catalysts: Identification of the nature of active site. Chem. Eng. J. 2022, 443, 136393.

    Article  CAS  Google Scholar 

  10. Chen, X. W.; Peng, M.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed metal clusters: Fabrication and application in alkane dehydrogenation. ACS Catal. 2022, 12, 12720–12743.

    Article  CAS  Google Scholar 

  11. Zhang, W.; Wang, H. Z.; Jiang, J. W.; Sui, Z.; Zhu, Y. A.; Chen, D.; Zhou, X. G. Size dependence of Pt catalysts for propane dehydrogenation: From atomically dispersed to nanoparticles. ACS Catal. 2020, 10, 12932–12942.

    Article  CAS  Google Scholar 

  12. Motagamwala, A. H.; Almallahi, R.; Wortman, J.; Igenegbai, V. O.; Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 2021, 373, 217–222.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Hook, A.; Celik, F. E. Predicting selectivity for ethane dehydrogenation and coke formation pathways over model Pt-M surface alloys with ab initio and scaling methods. J. Phys. Chem. C 2017, 121, 17882–17892.

    Article  CAS  Google Scholar 

  14. Ravel, B.; Newville M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

    Article  CAS  Google Scholar 

  15. Weisz, P. B.; Prater, C. D. Interpretation of measurements in experimental catalysis. Adv. Catal. 1954, 6, 143–196.

    Article  CAS  Google Scholar 

  16. Mears, D. E. Diagnostic criteria for heat transport limitations in fixed bed reactors. J. Catal. 1971, 20, 127–131.

    Article  CAS  Google Scholar 

  17. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computat. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  18. Kresse, G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  ADS  CAS  Google Scholar 

  19. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  ADS  CAS  Google Scholar 

  20. Li, Z.; Cui, Y. R.; Wu, Z. W.; Milligan, C.; Zhou, L.; Mitchell, G.; Xu, B.; Shi, E. Z.; Miller, J. T.; Ribeiro, F. H. et al. Reactive Metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 2018, 1, 349–355.

    Article  CAS  Google Scholar 

  21. Li, Z.; Xiao, Y.; Chowdhury, P. R.; Wu, Z. W.; Ma, T.; Chen, J. Z.; Wan, G.; Kim, T. H.; Jing, D. P.; He, P. L. et al. Direct methane activation by atomically thin platinum nanolayers on two-dimensional metal carbides. Nat. Catal. 2021, 4, 882–891.

    Article  ADS  CAS  Google Scholar 

  22. Li, Z.; Yu, L.; Milligan, C.; Ma, T.; Zhou, L.; Cui, Y. R.; Qi, Z. Y.; Libretto, N.; Xu, B.; Luo, J. W. et al. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. 2018, 9, 5258.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiao, Y.; Varma, A. Highly selective nonoxidative coupling of methane over Pt-Bi bimetallic catalysts. ACS Catal. 2018, 8, 2735–2740.

    Article  CAS  Google Scholar 

  24. Frash, M. V.; Van Santen, R. A. Activation of small alkanes in Ga-exchanged zeolites: A quantum chemical study of ethane dehydrogenation. J. Phys. Chem. A 2000, 104, 2468–2475.

    Article  CAS  Google Scholar 

  25. Li, Q.; Sui, Z. J.; Zhou, X. G.; Chen, D. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3 catalyst. Appl. Catal. A General 2011, 398, 18–26.

    Article  CAS  Google Scholar 

  26. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L. B.; Bollinger, M.; Bengaard, H.; Hammer, B.; Sljivancanin, Z.; Mavrikakis, M. et al. Universality in heterogeneous catalysis. J. Catal. 2002, 209, 275–278.

    Article  Google Scholar 

Download references

Acknowledgements

Y. W., Z. L., F. Y., and X. P. L. thank the support from Iowa State University (Herbert L. Stiles Professorship). Y. X. and T. K. M. appreciate the start-up funding from the College of Engineering and Science at Louisiana Tech University. Z. W. W. and J. T. M. were supported by the National Science Foundation under Cooperative Agreement (NSF/ERC CISTAR, No. EEC-164772). Use of the Advanced Photon Source, a US Department of Energy Office of Basic Energy Sciences, was supported under contract no. DE-AC02-06CH11357. The MRCAT beamline 10-BM is supported by the Department of Energy as well as the MRCAT member institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenhua Zeng, Yang Xiao or Yue Wu.

Electronic Supplementary Material

12274_2023_6022_MOESM1_ESM.pdf

Two-dimensional atomically thin Pt layers on MXenes: The role of electronic effects during catalytic dehydrogenation of ethane and propane

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Misicko, T.K., Yang, F. et al. Two-dimensional atomically thin Pt layers on MXenes: The role of electronic effects during catalytic dehydrogenation of ethane and propane. Nano Res. 17, 1251–1258 (2024). https://doi.org/10.1007/s12274-023-6022-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6022-2

Keywords

Navigation