Skip to main content
Log in

Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Semi-transparent perovskite solar cells (ST-PSCs) have broad applications in building integrated photovoltaics. However, the stability of ST-PSCs needs to be improved, especially in n-i-p ST-PSCs since the doped 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (Spiro-OMeTAD) is unstable at elevated temperatures and high humidity. In this work, a π-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)] (PBDB-T) is selected to form a polymer composite hole transport layer (HTL) with Spiro-OMeTAD. The sulfur atom of the thiophene unit and the carbonyl group of the polymer interact with the undercoordinated Pb2+ at the perovskite surface, which stabilizes the perovskite/HTL interface and passivates the interfacial defects. The incorporation of the polymer also increases the glass transition temperature and the moisture resistance of Spiro-OMeTAD. As a result, we obtain ST-PSCs with a champion efficiency of 13.71% and an average visible light transmittance of 36.04%. Therefore, a high light utilization efficiency of 4.94% can be obtained. Moreover, the encapsulated device can maintain 84% of the initial efficiency after 751 h under continuous one-sun illumination (at 30% relative humidity) at the open circuit and the unencapsulated device can maintain 80% of the initial efficiency after maximum power tracking for more than 1250 h under continuous one-sun illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batmunkh, M.; Zhong, Y. L.; Zhao, H. J. Recent advances in perovskite-based building-integrated photovoltaics. Adv. Mater. 2020, 32, 2000631.

    Article  CAS  Google Scholar 

  2. Bush, K. A.; Bailie, C. D.; Chen, Y.; Bowring, A. R.; Wang, W.; Ma, W.; Leijtens, T.; Moghadam, F.; McGehee, M. D. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 2016, 28, 3937–3943.

    Article  CAS  PubMed  Google Scholar 

  3. Koh, T. M.; Wang, H.; Ng, Y. F.; Bruno, A.; Mhaisalkar, S.; Mathews, N. Halide perovskite solar cells for building integrated photovoltaics: Transforming building façades into power generators. Adv. Mater. 2022, 34, 2104661.

    Article  CAS  Google Scholar 

  4. Bing, J. M.; Caro, L. G.; Talathi, H. P.; Chang, N. L.; McKenzie, D. R.; Ho-Baillie, A. W. Y. Perovskite solar cells for building integrated photovoltaics-glazing applications. Joule 2022, 6, 1446–1474.

    Article  CAS  Google Scholar 

  5. Traverse, C. J.; Pandey, R.; Barr, M. C.; Lunt, R. R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2017, 2, 849–860.

    Article  ADS  Google Scholar 

  6. Lee, K. T.; Jang, J. Y.; Ha, N. Y.; Lee, S.; Park, H. J. High-performance colorful semitransparent perovskite solar cells with phase-compensated microcavities. Nano Res. 2018, 11, 2553–2561.

    Article  CAS  Google Scholar 

  7. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  CAS  PubMed  Google Scholar 

  8. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Yang, W. S.; Noh, J. H.; Joong, N.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Yang, L.; Jin, Y. B.; Fang, Z.; Zhang, J. Y.; Nan, Z.; Zheng, L. F.; Zhuang, H. H.; Zeng, Q. H.; Liu, K. K.; Deng, B. R. et al. Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 2023, 15, 111.

    Article  CAS  ADS  Google Scholar 

  13. Liu, K. K.; Tian, C. B.; Liang, Y. M.; Luo, Y. J.; Xie, L. Q.; Wei, Z. H. Progress toward understanding the fullerene-related chemical interactions in perovskite solar cells. Nano Res. 2022, 15, 7139–7153.

    Article  CAS  ADS  Google Scholar 

  14. Mujahid, M.; Chen, C.; Zhang, J.; Li, C. N.; Duan, Y. Recent advances in semitransparent perovskite solar cells. InfoMat 2021, 3, 101–124.

    Article  CAS  Google Scholar 

  15. Yu, J. C.; Li, B.; Dunn, C. J.; Yan, J. L.; Diroll, B. T.; Chesman, A. S. R.; Jasieniak, J. J. High-performance and stable semi-transparent perovskite solar cells through composition engineering. Adv. Sci. 2022, 9, 2201487.

    Article  CAS  Google Scholar 

  16. Shi, H. X.; Zhang, L.; Huang, H.; Wang, X. T.; Li, Z. Y.; Xuan, D. Z.; Wang, C. Y.; Ou, Y. L.; Ni, C. J.; Li, D. G. et al. Simultaneous interfacial modification and defect passivation for wide-bandgap semitransparent perovskite solar cells with 14.4% power conversion efficiency and 38% average visible transmittance. Small 2022, 18, 2202144.

    Article  CAS  Google Scholar 

  17. Jeong, M. J.; Lee, J. H.; You, C. H.; Kim, S. Y.; Lee, S.; Noh, J. H. Oxide/halide/oxide architecture for high performance semi-transparent perovskite solar cells. Adv. Energy Mater. 2022, 12, 2200661.

    Article  CAS  Google Scholar 

  18. Yoon, S.; Ha, H. U.; Seok, H. J.; Kim, H. K.; Kang, D. W. Highly efficient and reliable semitransparent perovskite solar cells via top electrode engineering. Adv. Funct. Mater. 2022, 32, 2111760.

    Article  CAS  Google Scholar 

  19. Lim, S. H.; Seok, H. J.; Kwak, M. J.; Choi, D. H.; Kim, S. K.; Kim, D. H.; Kim, H. K. Semi-transparent perovskite solar cells with bidirectional transparent electrodes. Nano Energy 2021, 82, 105703.

    Article  CAS  Google Scholar 

  20. National Renewable Energy Laboratory. Best Reaearch-Call Efficiency Chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Jun 7, 2023).

  21. Rombach, F. M.; Haque, S. A.; Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 2021, 14, 5161–5190.

    Article  CAS  Google Scholar 

  22. Xu, D. D.; Mai, R. S.; Jiang, Y.; Chen, C.; Wang, R.; Xu, Z. J.; Kempa, K.; Zhou, G. F.; Liu, J. M.; Gao, J. W. An internal encapsulating layer for efficient, stable, repairable and low-lead-leakage perovskite solar cells. Energy Environ. Sci. 2022, 15, 3891–3900.

    Article  CAS  Google Scholar 

  23. Liu, X.; Zheng, B. L.; Shi, L.; Zhou, S. J.; Xu, J. T.; Liu, Z. H.; Yun, J. S.; Choi, E.; Zhang, M.; Lv, Y. H. et al. Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive. Nat. Photonics 2022, 17, 96–105.

    Article  ADS  Google Scholar 

  24. Wang, L. G.; Zhou, H. P.; Li, N. X.; Zhang, Y.; Chen, L. H. K.; Ke, X. X.; Chen, Z. X.; Wang, Z. L.; Sui, M. L.; Chen, Y. H. et al. Carrier transport composites with suppressed glass-transition for stable planar perovskite solar cells. J. Mater. Chem. A 2020, 8, 14106–14113.

    Article  CAS  Google Scholar 

  25. Jeong, M.; Choi, I. W.; Yim, K.; Jeong, S.; Kim, M.; Choi, S. J.; Cho, Y.; An, J. H.; Kim, H. B.; Jo, Y. et al. Large-area perovskite solar cells employing spiro-Naph hole transport material. Nat. Photonics 2022, 16, 119–125.

    Article  CAS  ADS  Google Scholar 

  26. Xu, D. D.; Gong, Z. M.; Jiang, Y.; Feng, Y. C.; Wang, Z.; Gao, X. S.; Lu, X. B.; Zhou, G. F.; Liu, J. M.; Gao, J. W. Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT. Nat. Commun. 2022, 13, 7020.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567, 511–515.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Wang, Q.; Bi, C.; Huang, J. S. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy 2015, 15, 275–280.

    Article  CAS  ADS  Google Scholar 

  29. Yu, C.; Zhang, B. Y.; Chen, C.; Wang, J. T.; Zhang, J.; Chen, P.; Li, C. N.; Duan, Y. Stable and highly efficient perovskite solar cells: Doping hydrophobic fluoride into hole transport material PTAA. Nano Res. 2022, 15, 4431–1438.

    Article  CAS  ADS  Google Scholar 

  30. Jeong, M. J.; Yeom, K. M.; Kim, S. J.; Jung, E. H.; Noh, J. H. Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%. Energy Environ. Sci. 2021, 14, 2419–2428.

    Article  CAS  Google Scholar 

  31. Wang, T.; Zhang, Y.; Kong, W. Y.; Qiao, L.; Peng, B. G.; Shen, Z. C.; Han, Q. F.; Chen, H.; Yuan, Z. L.; Zheng, R. K. et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 2022, 377, 1227–1232.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Seo, J. Y.; Akin, S.; Zalibera, M.; Preciado, M. A. R.; Kim, H. S.; Zakeeruddin, S. M.; Milić, J. V.; Grätzel, M. Dopant engineering for spiro-OMeTAD hole-transporting materials towards efficient perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2102124.

    Article  CAS  Google Scholar 

  33. Kong, J.; Shin, Y.; Röhr, J. A.; Wang, H.; Meng, J.; Wu, Y. S.; Katzenberg, A.; Kim, G.; Kim, D. Y.; Li, T. D. et al. CO2 doping of organic interlayers for perovskite solar cells. Nature 2021, 594, 51–56.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Jeong, M.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Bai, Y. Q.; Zhou, Z. S.; Xue, Q. F.; Liu, C. C.; Li, N.; Tang, H. R.; Zhang, J. B.; Xia, X. X.; Zhang, J.; Lu, X. H. et al. Dopant-free bithiophene-imide-based polymeric hole-transporting materials for efficient and stable perovskite solar cells. Adv. Mater. 2022, 34, 2110587.

    Article  CAS  Google Scholar 

  36. Liang, Y. M.; Song, P. Q.; Tian, H. R.; Tian, C. B.; Tian, W. J.; Nan, Z.; Cai, Y. T.; Yang, P. P.; Sun, C.; Chen, J. F. et al. Lead leakage preventable fullerene-porphyrin dyad for efficient and stable perovskite solar cells. Adv. Funct. Mater. 2021, 32, 2110139.

    Article  Google Scholar 

  37. Xie, L. Q.; Lin, K. B.; Lu, J. X.; Feng, W. J.; Song, P. Q.; Yan, C. Z.; Liu, K. K.; Shen, L. N.; Tian, C. B.; Wei, Z. H. Efficient and stable low-bandgap perovskite solar cells enabled by a CsPbBr3-cluster assisted bottom-up crystallization approach. J. Am. Chem. Soc. 2019, 141, 20537–20546.

    Article  CAS  PubMed  Google Scholar 

  38. Shen, L. N.; Song, P. Q.; Zheng, L. F.; Liu, K. K.; Lin, K. B.; Tian, W. J.; Luo, Y. J.; Tian, C. B.; Xie, L. Q.; Wei, Z. H. Perovskite-type stabilizers for efficient and stable formamidinium-based lead iodide perovskite solar cells. J. Mater. Chem. A 2021, 9, 20807–20815.

    Article  CAS  Google Scholar 

  39. Liu, K. K.; Luo, Y. J.; Jin, Y. B.; Liu, T. X.; Liang, Y. M.; Yang, L.; Song, P. Q.; Liu, Z. Y.; Tian, C. B.; Xie, L. Q. et al. Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nat. Commun. 2022, 13, 4891.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Fang, Z.; Yang, L.; Jin, Y. B.; Liu, K. K.; Feng, H. P.; Deng, B. R.; Zheng, L. F.; Cui, C. C.; Tian, C. B.; Xie, L. Q. et al. Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells. Chin. Phys. B 2022, 31, 118801.

    Article  ADS  Google Scholar 

  41. Qin, P. L.; Yang, G.; Ren, Z. W.; Cheung, S. H.; So, S. K.; Chen, L.; Hao, J. H.; Hou, J. H.; Li, G. Stable and efficient organo-metal halide hybrid perovskite solar cells via π-conjugated lewis base polymer induced trap passivation and charge extraction. Adv. Mater. 2018, 30, 1706126.

    Article  Google Scholar 

  42. Webb, T.; Liu, X. P.; Westbrook, R. J. E.; Kern, S.; Sajjad, M. T.; Jenatsch, S.; Jayawardena, K. D. G. I.; Perera, W. H. K.; Marko, I. P.; Sathasivam, S. et al. A multifaceted ferrocene interlayer for highly stable and efficient lithium doped spiro-OMeTAD-based perovskite solar cells. Adv. Energy Mater. 2022, 12, 2200666.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22179042 and U21A2078) and the Natural Science Foundation of Fujian Province (Nos. 2020J06021 and 2020J01064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liqiang Xie or Zhanhua Wei.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Feng, H., Fang, Z. et al. Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer. Nano Res. 17, 1500–1507 (2024). https://doi.org/10.1007/s12274-023-5975-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5975-5

Keywords

Navigation