Skip to main content
Log in

Stable and highly efficient perovskite solar cells: Doping hydrophobic fluoride into hole transport material PTAA

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) have rapidly developed in the past few years, with a record efficiency exceeding 25%. However, the long-term stability of PSCs remains a challenge and limits their practical application. Many high-performance PSCs have an n-i-p device architecture employing 4-tert-butylpyridine (t-BP) and bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) as bi-dopants for the hole-transporting layer (HTL). However, the hygroscopicity of Li-TFSI and low boiling point of t-BP negatively impact the moisture stability of these PSC devices. Herein, we report the use of the fluorine-containing hydrophobic compound tris(pentafluorophenyl)phosphine (35FP) as a dopant for poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). With better hydrophobicity and stability than undoped PTAA, a PSC device containing 35FP-doped PTAA demonstrated improved charge transport properties and reduced trap density, leading to a significant enhancement in performance. In addition, the long-term stability of a 35FP-doped PTAA PSC under air exposure without encapsulation was demonstrated, with 80% of the initial device efficiency maintained for 1,000 h. This work provides a new approach for the fabrication of efficient and stable PSCs to explore hydrophobic dopants as a substitute for hydrophilic Li-TFSI/t-BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, C.; Chen, C.; Muhammad, M.; Ma, X. J.; Wang, Z. K.; Liu, Y. F.; Chen, P.; Chen, S. M.; Liu, B.; Wang, J. T. et al. Hybrid perovskite charge generation layer for highly efficient tandem organic light-emitting diodes. Org. Electron. 2019, 73, 299–303.

    Article  CAS  Google Scholar 

  2. Chen, S. M.; Chen, C.; Bao, C.; Mujahid, M.; Li, Y.; Chen, P.; Duan, Y. White light-emitting devices based on inorganic perovskite and organic materials. Molecules 2019, 24, 800.

    Article  Google Scholar 

  3. Chen, C.; Han, T. H.; Tan, S.; Xue, J. J.; Zhao, Y. P.; Liu, Y. F.; Wang, H. R.; Hu, W.; Bao, C.; Mazzeo, M. et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett. 2020, 20, 4673–4680.

    Article  CAS  Google Scholar 

  4. Yu, C.; Chen, C.; Wu, D.; Jiang, X.; Duan, Y. Research progress of inkjet printed perovskite optoelectronic devices. Chin. J. Liq. Cryst. Dis. 2021, 36, 158–175.

    Article  CAS  Google Scholar 

  5. NREL. Best research-cell efficiencies [Online].https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev211117.pdf (accessed Dec 8, 2021).

  6. Zhao, Y. P.; Zhu, P. C.; Wang, M. H.; Huang, S.; Zhao, Z. P.; Tan, S.; Han, T. H.; Lee, J. W.; Huang, T. Y.; Wang, R. et al. A polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells. Adv. Mater. 2020, 32, 1907769.

    Article  CAS  Google Scholar 

  7. Yan, K. Y.; Long, M. Z.; Zhang, T. K.; Wei, Z. H.; Chen, H. N.; Yang, S. H.; Xu, J. B. Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 2015, 137, 4460–4468.

    Article  CAS  Google Scholar 

  8. Chen, C.; Wu, D.; Yuan, M.; Yu, C.; Zhang, J.; Li, C. N.; Duan, Y. Spectroscopic ellipsometry study of CsPbBr3 perovskite thin films prepared by vacuum evaporation. J. Phys. D:Appl. Phys. 2021, 54, 224002.

    Article  CAS  Google Scholar 

  9. Chen, J. Z.; Park, N. G. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 2020, 5, 2742–2786.

    Article  CAS  Google Scholar 

  10. Yoo, J. J.; Wieghold, S.; Sponseller, M. C.; Chua, M. R.; Bertram, S. N.; Hartono, N. T. P.; Tresback, J. S.; Hansen, E. C.; Correa-Baena, J. P.; Bulović, V. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 2019, 72, 2192–2199.

    Article  Google Scholar 

  11. Rajagopal, A.; Yao, K.; Jen, A. K. Y. Toward perovskite solar cell commercialization: A perspective and research roadmap based on interfacial engineering. Adv. Mater. 2018, 30, 1800455.

    Article  Google Scholar 

  12. Khenkin, M. V.; Katz, E. A.; Abate, A.; Bardizza, G.; Berry, J. J.; Brabec, C.; Brunetti, F.; Bulović, V.; Burlingame, Q.; Di Carlo, A. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 2020, 5, 35–49.

    Article  Google Scholar 

  13. Arabpour Roghabadi, F.; Alidaei, M.; Mousavi, S. M.; Ashjari, T.; Tehrani, A. S.; Ahmadi, V.; Sadrameli, S. M. Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX3 to 2D Ruddlesden-Popper perovskite absorbers. J. Mater. Chem. A. 2019, 7, 5898–5933.

    Article  CAS  Google Scholar 

  14. Huang, J. B.; Tan, S. Q.; Lund, P. D.; Zhou, H. P. Impact of H2O on organic-inorganic hybrid perovskite solar cells. Energy Environ. Sci. 2017, 10, 2284–2311.

    Article  Google Scholar 

  15. Wali, Q.; Iftikhar, F. J.; Khan, M. E.; Ullah, A.; Iqbal, Y.; Jose, R. Advances in stability of perovskite solar cells. Org. Electron. 2020, 78, 105590.

    Article  CAS  Google Scholar 

  16. Bi, D. Q.; Li, X.; Milic, J. V.; Kubicki, D. J.; Pellet, N.; Luo, J. S.; LaGrange, T.; Mettraux, P.; Emsley, L.; Zakeeruddin, S. M. et al. Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat. Commun. 2018, 9, 4482.

    Article  Google Scholar 

  17. Xiang, W. C.; Wang, Z. W.; Kubicki, D. J.; Tress, W.; Luo, J. S.; Prochowicz, D.; Akin, S.; Emsley, L.; Zhou, J. T.; Dietler, G. et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 2019, 3, 205–214.

    Article  CAS  Google Scholar 

  18. Meng, L.; Sun, C. K.; Wang, R.; Huang, W. C.; Zhao, Z. P.; Sun, P. Y.; Huang, T. Y.; Xue, J. J.; Lee, J. W.; Zhu, C. H. et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 2018, 140, 17255–17262.

    Article  CAS  Google Scholar 

  19. Li, H. Y.; Wang, Q. T.; Li, H. M.; Zhuang, J.; Guo, H.; Liu, X. C.; Wang, H. Y.; Zheng, R. H.; Gong, X. L. Interface modification for enhanced efficiency and stability perovskite solar cells. J. Phys. Chem. C 2020, 124, 12948–12955.

    Article  CAS  Google Scholar 

  20. Agresti, A.; Pescetelli, S.; Palma, A. L.; Martín-García, B.; Najafi, L.; Bellani, S.; Moreels, I.; Prato, M.; Bonaccorso, F.; Di Carlo, A. Two-dimensional material interface engineering for efficient perovskite large-area modules. ACS Energy Lett. 2019, 4, 1862–1871.

    Article  CAS  Google Scholar 

  21. Zhu, Y. Y.; Poddar, S.; Shu, L.; Fu, Y.; Fan, Z. Y. Recent progress on interface engineering for high-performance, stable perovskites solar cells. Adv. Mater. Interfaces 2020, 7, 2000118.

    Article  CAS  Google Scholar 

  22. Xu, J. X.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M. J.; Jeon, S.; Ning, Z. J.; McDowell, J. J. et al. Perovskitefullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.

    Article  CAS  Google Scholar 

  23. Zhao, Q.; Wu, R. S.; Zhang, Z. L.; Xiong, J.; He, Z.; Fan, B. J.; Dai, Z. J.; Yang, B. C.; Xue, X. G.; Cai, P. et al. Achieving efficient inverted planar perovskite solar cells with nondoped PTAA as a hole transport layer. Org. Electron. 2019, 71, 106–112.

    Article  CAS  Google Scholar 

  24. Yaghoobi Nia, N.; Méndez, M.; Paci, B.; Generosi, A.; Di Carlo, A.; Palomares, E. Analysis of the efficiency losses in hybrid perovskite/PTAA solar cells with different molecular weights: Morphology versus kinetics. ACS Appl. Energy Mater. 2020, 3, 6853–6859.

    Article  CAS  Google Scholar 

  25. Li, Y.; Liang, C.; Wang, G. P.; Li, J. L.; Chen, S.; Yang, S. H.; Xing, G. C.; Pan, H. Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells. Photonics Res. 2020, 8, A39–A49.

    Article  CAS  Google Scholar 

  26. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddin, M. K. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486–491.

    Article  CAS  Google Scholar 

  27. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602–1608.

    Article  CAS  Google Scholar 

  28. Wang, S.; Huang, Z. H.; Wang, X. F.; Li, Y. M.; Gunther, M.; Valenzuela, S.; Parikh, P.; Cabreros, A.; Xiong, W.; Meng, Y. S. Unveiling the role of tBP-LiTFSI complexes in perovskite solar cells. J. Am. Chem. Soc. 2018, 140, 16720–16730.

    Article  CAS  Google Scholar 

  29. Perron, G.; Brouillette, D.; Desnoyers, J. E. Comparison of the thermodynamic and transport properties of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) with LiClO4 and Bu4NBr in water at 25 °C. Can. J. Chem. 1997, 75, 1608–1614.

    Article  CAS  Google Scholar 

  30. Tan, B. E.; Raga, S. R.; Chesman, A. S. R.; Fürer, S. O.; Zheng, F.; McMeekin, D. P.; Jiang, L. C.; Mao, W. X.; Lin, X. F.; Wen, X. M. et al. LiTFSI-free spiro-OMeTAD-based perovskite solar cells with power conversion efficiencies exceeding 19%. Adv. Energy Mater. 2019, 9, 1901519.

    Article  Google Scholar 

  31. Li, Z.; Xiao, C. X.; Yang, Y.; Harvey, S. P.; Kim, D. H.; Christians, J. A.; Yang, M. J.; Schulz, P.; Nanayakkara, S. U.; Jiang, C. S. et al. Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 2017, 10, 1234–1242.

    Article  CAS  Google Scholar 

  32. Xu, B.; Zhu, Z. L.; Zhang, J. B.; Liu, H. B.; Chueh, C. C.; Li, X. S.; Jen, A. K. Y. 4-Tert-butylpyridine free organic hole transporting materials for stable and efficient planar perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700683.

    Article  Google Scholar 

  33. Sathiyan, G.; Syed, A. A.; Chen, C.; Wu, C.; Tao, L.; Ding, X. D.; Miao, Y. W.; Li, G. Q.; Cheng, M.; Ding, L. M. Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells. Nano Energy 2020, 72, 104673.

    Article  CAS  Google Scholar 

  34. Wang, Q.; Bi, C.; Huang, J. S. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy 2015, 15, 275–280.

    Article  CAS  Google Scholar 

  35. Luo, J. S.; Xia, J. X.; Yang, H.; Chen, L. L.; Wan, Z. Q.; Han, F.; Malik, H. A.; Zhu, X. H.; Jia, C. Y. Toward high-efficiency, hysteresis-less, stable perovskite solar cells: Unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid. Energy Environ. Sci. 2018, 11, 2035–2045.

    Article  CAS  Google Scholar 

  36. Liu, Y. W.; Liu, Z. H.; Lee, E. C. High-performance inverted perovskite solar cells using doped poly(triarylamine) as the hole transport layer. ACS Appl. Energy Mater. 2019, 2, 1932–1942.

    Article  CAS  Google Scholar 

  37. Paek, S.; Rub, M. A.; Choi, H.; Kosa, S. A.; Alamry, K. A.; Cho, J. W.; Gao, P.; Ko, J.; Asiri, A. M.; Nazeeruddin, M. K. A dualfunctional asymmetric squaraine-based low band gap hole transporting material for efficient perovskite solar cells. Nanoscale 2016, 8, 6335–6340.

    Article  CAS  Google Scholar 

  38. Luo, J. S.; Han, F.; Wan, Z. Q.; Malik, H. A.; Zhao, B. W.; Chen, L. L.; Jia, C. Y.; Zhu, X. H.; Wang, R. L.; Yao, X. J. Structure-performance relationships of hole-transporting materials in perovskite solar cells: Minor structural discrepancy effects on the efficiency. Electrochim. Acta 2017, 257, 380–387.

    Article  CAS  Google Scholar 

  39. Liu, J.; Liu, W. Z.; Aydin, E.; Harrison, G. T.; Isikgor, F. H.; Yang, X. B.; Subbiah, A. S.; De Wolf, S. Lewis-acid doping of triphenylamine-based hole transport materials improves the performance and stability of perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 23874–23884.

    Article  CAS  Google Scholar 

  40. Baloch, A. A. B.; Alharbi, F. H.; Grancini, G.; Hossain, M. I.; Nazeeruddin, M. K.; Tabet, N. Analysis of photocarrier dynamics at interfaces in perovskite solar cells by time-resolved photoluminescence. J. Phys. Chem. C 2018, 122, 26805–26815.

    Article  CAS  Google Scholar 

  41. Wang, P. Y.; Li, R. J.; Chen, B. B.; Hou, F. H.; Zhang, J.; Zhao, Y.; Zhang, X. D. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv. Mater. 2020, 32, 1905766.

    Article  CAS  Google Scholar 

  42. Zhang, X. L.; Zhang, J. D.; Phuyal, D.; Du, J.; Tian, L.; Öberg, V. A.; Johansson, M. B.; Cappel, U. B.; Karis, O.; Liu, J. H. et al. Inorganic CsPbI3 perovskite coating on PbS quantum dot for highly efficient and stable infrared light converting solar cells. Adv. Energy Mater. 2018, 8, 1702049.

    Article  Google Scholar 

  43. Li, M. J.; Li, B.; Cao, G. Z.; Tian, J. J. Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process. J. Mater. Chem. A 2017, 5, 21313–21319.

    Article  CAS  Google Scholar 

  44. Gao, W. Y.; Ran, C. X.; Li, J. R.; Dong, H.; Jiao, B.; Zhang, L. J.; Lan, X. G.; Hou, X.; Wu, Z. X. Robust stability of efficient lead-free formamidinium tin iodide perovskite solar cells realized by structural regulation. J. Phys. Chem. Lett. 2018, 9, 6999–7006.

    Article  CAS  Google Scholar 

  45. Wei, Q. B.; Zi, W.; Yang, Z.; Yang, D. Photoelectric performance and stability comparison of MAPbI3 and FAPbI3 perovskite solar cells. Solar Energy 2018, 174, 933–939.

    Article  CAS  Google Scholar 

  46. Yang, Z.; Dou, J. J.; Kou, S.; Dang, J. L.; Ji, Y. Q.; Yang, G. J.; Wu, W. Q.; Kuang, D. B.; Wang, M. Q. Multifunctional phosphorus-containing Lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells. Adv. Funct. Mater. 2020, 30, 1910710.

    Article  CAS  Google Scholar 

  47. Kakavelakis, G.; Alexaki, K.; Stratakis, E.; Kymakis, E. Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer. RSC Adv. 2017, 7, 12998–13002.

    Article  CAS  Google Scholar 

  48. Cai, M. L.; Ishida, N.; Li, X.; Yang, X. D.; Noda, T.; Wu, Y. Z.; Xie, F. X.; Naito, H.; Fujita, D.; Han, L. Y. Control of electrical potential distribution for high-performance perovskite solar cells. Joule 2018, 2, 296–306.

    Article  CAS  Google Scholar 

  49. Li, J. S.; Jiu, T. G.; Duan, C. H.; Wang, Y.; Zhang, H. N.; Jian, H. M.; Zhao, Y. J.; Wang, N.; Huang, C. S.; Li, Y. L. Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne. Nano Energy 2018, 46, 331–337.

    Article  CAS  Google Scholar 

  50. Zhou, Z. C.; Xu, S. J.; Song, J. N.; Jin, Y. Z.; Yue, Q. H.; Qian, Y. H.; Liu, F.; Zhang, F. L.; Zhu, X. Z. High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat. Energy 2018, 3, 952–959.

    Article  CAS  Google Scholar 

  51. Jiang, K.; Wu, F.; Yu, H.; Yao, Y. Q.; Zhang, G. Y.; Zhu, L. N.; Yan, H. A perylene diimide-based electron transport layer enabling efficient inverted perovskite solar cells. J. Mater. Chem. A 2018, 6, 16868–16873.

    Article  CAS  Google Scholar 

  52. Targhi, F. F.; Jalili, Y. S.; Kanjouri, F. MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties. Results Phys. 2018, 10, 616–627.

    Article  Google Scholar 

  53. Sun, Y.; Peng, J. J.; Chen, Y. N.; Yao, Y. S.; Liang, Z. Q. Triple-cation mixed-halide perovskites: Towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive. Sci. Rep. 2017, 7, 46193.

    Article  CAS  Google Scholar 

  54. Gujar, T. P.; Unger, T.; Schönleber, A.; Fried, M.; Panzer, F.; van Smaalen, S.; Köhler, A.; Thelakkat, M. The role of PbI2 in CH3NH3PbI3 perovskite stability, solar cell parameters and device degradation. Phys. Chem. Chem. Phys. 2017, 20, 605–614.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 61974054 and 61675088), the International Science & Technology Cooperation Program of Jilin (No. 20190701023GH), the Scientific and Technological Developing Scheme of Jilin Province (Nos. 20200401045GX), and the Project of Science and Technology Development Plan of Jilin Province (No. 20190302011G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhang or Yu Duan.

Ethics declarations

There are no conflicts to declare.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Zhang, B., Chen, C. et al. Stable and highly efficient perovskite solar cells: Doping hydrophobic fluoride into hole transport material PTAA. Nano Res. 15, 4431–4438 (2022). https://doi.org/10.1007/s12274-021-4056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4056-x

Keywords

Navigation