Skip to main content
Log in

Self-healing Ga-based liquid metal/alloy anodes for rechargeable batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the rapid development of electronics, electric vehicles, and grid energy storage stations, higher requirements have been put forward for advanced secondary batteries. Liquid metal/alloy electrodes have been considered as a promising development direction to achieve excellent electrochemical performance in metal-ion batteries, due to their specific advantages including the excellent electrode kinetics and self-healing ability against microstructural electrode damage. For conventional liquid batteries, high temperatures are needed to keep electrode liquid and ensure the high conductivity of molten salt electrolytes, which also brings the corrosion and safety issues. Ga-based metal/alloys, which can be operated at or near room temperature, are potential candidates to circumvent the above problems. In this review, the properties and advantages of Ga-based metal/alloys are summarized. Then, Ga-based liquid metal/alloys as anodes in various metal-ion batteries are reviewed in terms of their self-healing ability, battery configurations, working mechanisms, and so on. Furthermore, some views on the future development of Ga-based electrodes in batteries are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, S. L.; Liu, Y.; Fan, Q. N.; Zhang, C. F.; Zhou, T. F.; Kalantar-Zadeh, K.; Guo, Z. P. Liquid metal batteries for future energy storage. Energy Environ. Sci. 2021, 14, 4177–4202.

    Article  CAS  Google Scholar 

  2. Liu, Y. K.; Zhao, C. Z.; Du, J.; Zhang, X. Q.; Chen, A. B.; Zhang, Q. Research progresses of liquid electrolytes in lithium-ion batteries. Small 2023, 19, 2205315.

    Article  CAS  Google Scholar 

  3. Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656.

    Article  ADS  CAS  Google Scholar 

  4. Grey, C. P.; Hall, D. S. Prospects for lithium-ion batteries and beyond-a 2030 vision. Nat. Commun. 2020, 11, 6279.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

    Article  CAS  PubMed  Google Scholar 

  6. Massé, R. C.; Uchaker, E.; Cao, G. Z. Beyond Li-ion: Electrode materials for sodium- and magnesium-ion batteries. Sci. China Mater. 2015, 58, 715–766.

    Article  Google Scholar 

  7. Sacci, R. L.; Black, J. M.; Balke, N.; Dudney, N. J.; More, K. L.; Unocic, R. R. Nanoscale imaging of fundamental li battery chemistry: Solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett. 2015, 15, 2011–2018.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Gao, X. W.; Zhou, Y. N.; Han, D. Z.; Zhou, J. Q.; Zhou, D. Z.; Tang, W.; Goodenough, J. B. Thermodynamic understanding of Li-dendrite formation. Joule 2020, 4, 1864–1879.

    Article  CAS  Google Scholar 

  9. Lee, B.; Paek, E.; Mitlin, D.; Lee, S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416–5460.

    Article  CAS  PubMed  Google Scholar 

  10. Shen, Y. L.; Wang, Y. J.; Miao, Y. C.; Yang, M.; Zhao, X. Y.; Shen, X. D. High-energy interlayer-expanded copper sulfide cathode material in non-corrosive electrolyte for rechargeable magnesium batteries. Adv. Mater. 2020, 32, 1905524.

    Article  CAS  Google Scholar 

  11. Zhang, Y.; Liu, S. Q.; Ji, Y. J.; Ma, J. M.; Yu, H. J. Emerging nonaqueous aluminum-ion batteries: Challenges, status, and perspectives. Adv. Mater. 2018, 30, 1706310.

    Article  Google Scholar 

  12. Bonnick, P.; Muldoon, J. A trip to Oz and a peak behind the curtain of magnesium batteries. Adv. Funct. Mater. 2020, 30, 1910510.

    Article  CAS  Google Scholar 

  13. Nguyen, D. T.; Eng, A. Y. S.; Horia, R.; Sofer, Z.; Handoko, A. D.; Ng, M. F.; Seh, Z. W. Rechargeable magnesium batteries enabled by conventional electrolytes with multifunctional organic chloride additives. Energy Storage Mater. 2022, 45, 1120–1132.

    Article  Google Scholar 

  14. Niu, J. Z.; Zhang, Z. H.; Aurbach, D. Alloy anode materials for rechargeable Mg ion batteries. Adv. Energy Mater. 2020, 10, 2000697.

    Article  CAS  Google Scholar 

  15. Peng, M. Q.; Shin, K.; Jiang, L. X.; Jin, Y.; Zeng, K.; Zhou, X. L.; Tang, Y. B. Alloy-type anodes for high-performance rechargeable batteries. Angew. Chem., Int. Ed. 2022, 61, e202206770.

    Article  ADS  CAS  Google Scholar 

  16. Wang, L. C.; Światowska, J.; Dai, S. R.; Cao, M. L.; Zhong, Z. C.; Shen, Y.; Wang, M. K. Promises and challenges of alloy-type and conversion-type anode materials for sodium-ion batteries. Mater. Today Energy 2019, 11, 46–60.

    Article  ADS  CAS  Google Scholar 

  17. Corsi, J. S.; Welborn, S. S.; Stach, E. A.; Detsi, E. Insights into the degradation mechanism of nanoporous alloy-type Li-ion battery anodes. ACS Energy Lett. 2021, 6, 1749–1756.

    Article  CAS  Google Scholar 

  18. Li, H. M.; Yin, H. Y.; Wang, K. L.; Cheng, S. J.; Jiang, K.; Sadoway, D. R. Liquid metal electrodes for energy storage batteries. Adv. Energy Mater. 2016, 6, 1600483.

    Article  Google Scholar 

  19. Kim, H.; Boysen, D. A.; Newhouse, J. M.; Spatocco, B. L.; Chung, B.; Burke, P. J.; Bradwell, D. J.; Jiang, K.; Tomaszowska, A. A.; Wang, K. L. et al. Liquid metal batteries: Past, present, and future. Chem. Rev. 2013, 113, 2075–2099.

    Article  CAS  PubMed  Google Scholar 

  20. Bradwell, D. J.; Kim, H.; Sirk, A. H. C.; Sadoway, D. R. Magnesium-antimony liquid metal battery for stationary energy storage. J. Am.x Chem. Soc. 2012, 134, 1895–1897.

    Article  CAS  Google Scholar 

  21. Guo, X. L.; Ding, Y.; Yu, G. H. Design principles and applications of next-generation high-energy-density batteries based on liquid metals. Adv. Mater. 2021, 33, 2100052.

    Article  CAS  Google Scholar 

  22. Guo, X. L.; Ding, Y.; Xue, L. G.; Zhang, L. Y.; Zhang, C. K.; Goodenough, J. B.; Yu, G. H. A self-healing room-temperature liquid-metal anode for alkali-ion batteries. Adv. Funct. Mater. 2018, 25, 1804649.

    Article  Google Scholar 

  23. Guo, X. L.; Zhang, L. Y.; Ding, Y.; Goodenough, J. B.; Yu, G. H. Room-temperature liquid metal and alloy systems for energy storage applications. Energy Environ. Sci. 2019, 12, 2605–2619.

    Article  CAS  Google Scholar 

  24. Song, C.; Yuan, Y.; Gu, D. C.; Chen, T.; Liu, Y. P.; Tang, A. T.; Wu, L.; Li, D. J.; Pan, F. S. The evaluation of Mg-Ga compounds as electrode materials for Mg-ion batteries via ab initio simulation. J. Electrochem. Soc. 2021, 168, 110539.

    Article  ADS  CAS  Google Scholar 

  25. Xing, Z. R.; Fu, J. H.; Chen, S.; Gao, J. Y.; Zhao, R. Q.; Liu, J. Perspective on gallium-based room temperature liquid metal batteries. Front. Energy 2022, 16, 23–48.

    Article  Google Scholar 

  26. Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; De Castro, I. A.; Esrafilzadeh, D.; Barrow, S. J.; Dickey, M. D.; Kalantar-Zadeh, K. Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev. 2018, 47, 4073–4111.

    Article  CAS  PubMed  Google Scholar 

  27. Yu, S.; Kaviany, M. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles. J. Chem. Phys. 2014, 140, 064303.

    Article  ADS  PubMed  Google Scholar 

  28. Jahn, D.; Plust, H. G. Possible use of gallium as negative electrode in galvanic cells. Nature 1963, 199, 806–807.

    Article  ADS  CAS  Google Scholar 

  29. Zhang, Q.; Liu, J. Nano liquid metal as an emerging functional material in energy management, conversion and storage. Nano Energy 2013, 2, 863–872.

    Article  CAS  Google Scholar 

  30. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

    Article  CAS  PubMed  Google Scholar 

  31. Wu, Y. P.; Huang, L.; Huang, X. K.; Guo, X. R.; Liu, D.; Zheng, D.; Zhang, X. L.; Ren, R.; Qu, D. Y.; Chen, J. H. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 2017, 10, 1854–1861.

    Article  CAS  Google Scholar 

  32. Liu, T. Y.; Sen, P.; Kim, C. J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J. Microelectromech. Syst. 2012, 21, 443–450.

    Article  CAS  Google Scholar 

  33. Saint, J.; Morcrette, M.; Larcher, D.; Tarascon, J. M. Exploring the Li-Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs Li. Solid State Ionics 2005, 176, 189–197.

    Article  CAS  Google Scholar 

  34. Lee, K. T.; Jung, Y. S.; Kim, T.; Kim, C. H.; Kim, J. H.; Kwon, J. Y.; Oh, S. M. Liquid gallium electrode confined in porous carbon matrix as anode for lithium secondary batteries. Electrochem. Solid State Lett. 2008, 11, A21–A24.

    Article  CAS  Google Scholar 

  35. Wang, J.; Wang, L.; Ma, Y.; Yang, S. B. Liquid gallium encapsulated in carbon nanofibers for high performance lithium storage. Mater. Lett. 2018, 228, 297–300.

    Article  CAS  Google Scholar 

  36. Deshpande, R. D.; Li, J. C.; Cheng, Y. T.; Verbrugge, M. W. Liquid metal alloys as self-healing negative electrodes for lithium ion batteries. J. Electrochem. Soc. 2011, 158, A845–A849.

    Article  CAS  Google Scholar 

  37. Yang, Y.; Hao, J.; Xue, J. Y.; Liu, S. K.; Chi, C. X.; Zhao, J. P.; Xu, Y. J.; Li, Y. Morphology regulation of Ga particles from ionic liquids and their lithium storage properties. New J. Chem. 2021, 45, 4408–4413.

    Article  CAS  Google Scholar 

  38. Wang, L.; Welborn, S. S.; Kumar, H.; Li, M. N.; Wang, Z. Y.; Shenoy, V. B.; Detsi, E. High-rate and long cycle-life alloy-type magnesium-ion battery anode enabled through (de)magnesiation-induced near-room-temperature solid-liquid phase transformation. Adv. Energy Mater. 2019, 9, 1902086.

    Article  CAS  Google Scholar 

  39. Song, M. J.; Niu, J. Z.; Cui, W. R.; Bai, Q. G.; Zhang, Z. H. Self-healing liquid Ga-based anodes with regulated wetting and working temperatures for advanced Mg ion batteries. J. Mater. Chem. A 2021, 9, 17019–17029.

    Article  CAS  Google Scholar 

  40. Jiao, H. D.; Jiao, S. W.; Li, S. J.; Song, W. L.; Chen, H. S.; Tu, J. G.; Wang, M. Y.; Tian, D. H.; Fang, D. N. Liquid gallium as long cycle life and recyclable negative electrode for Al-ion batteries. Chem. Eng. J. 2020, 391, 123594.

    Article  CAS  Google Scholar 

  41. Zhu, J. H.; Wu, Y. P.; Huang, X. K.; Huang, L.; Cao, M. Y.; Song, G. Q.; Guo, X. R.; Sui, X.; Ren, R.; Chen, J. H. Self-healing liquid metal nanoparticles encapsulated in hollow carbon fibers as a free-standing anode for lithium-ion batteries. Nano Energy 2019, 62, 883–889.

    Article  ADS  CAS  Google Scholar 

  42. Li, T. Y.; Cui, Y.; Fan, L. L.; Zhou, X. W.; Ren, Y.; De Andrade, V.; De Carlo, F.; Zhu, L. K. A self-healing liquid metal anode with PEO-based polymer electrolytes for rechargeable lithium batteries. Appl. Mater. Today 2020, 21, 100802.

    Article  Google Scholar 

  43. Wang, K. Z.; Hu, J.; Chen, T. Y.; Tang, J. T.; Wang, Z. Y.; Fan, N. N.; Zhang, W. J.; Wang, K. J. A high-performance room-temperature Li∥Ga-Sn liquid metal battery for grid energy storage. Energy Technol. 2021, 9, 2100330.

    Article  CAS  Google Scholar 

  44. Song, M. J.; Wang, Y.; Yu, B.; Yang, W. F.; Cheng, G. H.; Cui, W. R.; Zhang, Z. H. A high-performance room-temperature magnesium ion battery with self-healing liquid alloy anode mediated with a bifunctional intermetallic compound. Chem. Eng. J. 2022, 450, 138176.

    Article  CAS  Google Scholar 

  45. Song, M. J.; Yu, B.; Cui, W. R.; Yang, W. F.; Bai, Q. G.; Zhang, Z. H. A self-healing room-temperature liquid eutectic GaSn anode with improved wettability for advanced Mg ion batteries. Chem. Eng. J. 2022, 435, 134903.

    Article  CAS  Google Scholar 

  46. Huang, C. H.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Jiang, J. Z. A self-healing anode for Li-ion batteries by rational interface modification of room-temperature liquid metal. ACS Appl. Energy Mater. 2021, 4, 12224–12231.

    Article  CAS  Google Scholar 

  47. Yu, J. Y.; Xia, J.; Guan, X. G.; Xiong, G. Y.; Zhou, H. L.; Yin, S.; Chen, L. J.; Yang, Y.; Zhang, S. C.; Xing, Y. L. et al. Self-healing liquid metal confined in carbon nanofibers/carbon nanotubes paper as a free-standing anode for flexible lithium-ion batteries. Electrochim. Acta 2022, 425, 140721.

    Article  CAS  Google Scholar 

  48. Ding, Y.; Guo, X. L.; Qian, Y. M.; Xue, L. G.; Dolocan, A.; Yu, G. H. Room-temperature all-liquid-metal batteries based on fusible alloys with regulated interfacial chemistry and wetting. Adv. Mater. 2020, 32, 2002577.

    Article  CAS  Google Scholar 

  49. Huang, Y.; Wang, H. J.; Jiang, Y. B.; Jiang, X. Y. Preparation of room temperature liquid metal negative electrode for lithium ion battery in one step stirring. Mater. Lett. 2020, 276, 128261.

    Article  CAS  Google Scholar 

  50. Wei, C. L.; Fei, H. F.; Tian, Y.; An, Y. L.; Zeng, G. F.; Feng, J. K.; Qian, Y. T. Room-temperature liquid metal confined in MXene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries. Small 2019, 15, 1903214.

    Article  CAS  Google Scholar 

  51. Wu, Y. P.; Huang, X. K.; Huang, L.; Guo, X. R.; Ren, R.; Liu, D.; Qu, D. Y.; Chen, J. H. Self-healing liquid metal and Si composite as a high-performance anode for lithium-ion batteries. ACS Appl. Energy Mater. 2018, 1, 1395–1399.

    Article  CAS  Google Scholar 

  52. Han, B.; Yang, Y.; Shi, X. B.; Zhang, G. Z.; Gong, L.; Xu, D. W.; Zeng, H. B.; Wang, C. Y.; Gu, M.; Deng, Y. H. Spontaneous repairing liquid metal/Si nanocomposite as a smart conductive-additive-free anode for lithium-ion battery. Nano Energy 2018, 50, 359–366.

    Article  CAS  Google Scholar 

  53. Hapuarachchi, S. N. S.; Nerkar, J. Y.; Wasalathilake, K. C.; Chen, H.; Zhang, S. Q.; O’Mullane, A. P.; Yan, C. Utilizing room temperature liquid metals for mechanically robust silicon anodes in lithium-ion batteries. Batteries Supercaps 2018, 1, 122–128.

    Article  CAS  Google Scholar 

  54. Huy, V. P. H.; So, S.; Kim, I. T.; Hur, J. Self-healing gallium phosphide embedded in a hybrid matrix for high-performance Li-ion batteries. Energy Storage Mater. 2021, 34, 669–681.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the Key Research and Development Program of Shandong Province (No. 2021ZLGX01) and the support of Taishan Scholar Foundation of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meijia Song or Zhonghua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Zhang, Z. Self-healing Ga-based liquid metal/alloy anodes for rechargeable batteries. Nano Res. 17, 1366–1383 (2024). https://doi.org/10.1007/s12274-023-5955-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5955-9

Keywords

Navigation