Skip to main content
Log in

Ultrathin zirconium-porphyrin based nanobelts as photo-coupled electrocatalysis for CH4 oxidation to CO

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of novel and effective methods for the activation of methane is fascinating, which offers a promising potential for the sustainable development of chemical industry and the mitigation of greenhouse effect. Here we successfully synthesize two-dimensional (2D) Zr/5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) ultrathin nanobelts (UNBs) as a high efficiency catalyst for methane (CH4) oxidation to carbon monoxide (CO). The Co-UNBs show well photo-coupled electrocatalytic performances for CH4 activation (CO production rates are 0.171 and 8.416 mmol·g−1·h−1 under dark/visible light, respectively). Density functional theory (DFT) calculations were performed to illustrate the mechanism of photoelectrocatalytic process and the high efficiency oxidation of CH4 to CO. Based on the ultrathin structure and highly efficient catalytic properties, this work provides a prospecting avenue for the design and synthesis of methane oxidation catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwach, P.; Pan, X. L.; Bao, X. H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects. Chem. Rev. 2017, 117, 8497–8520.

    CAS  Google Scholar 

  2. Bu, Y. H.; Du, W. X.; Du, J. P.; Zhou, A. N.; Lu, C.; Liu, H. J.; Guo, S. L. The potential utilization of lecithin as natural gas hydrate decomposition inhibitor in oil well cement at low temperatures. Constr. Build. Mater. 2021, 269, 121274.

    CAS  Google Scholar 

  3. Shindell, D. T.; Faluvegi, G.; Koch, D. M.; Schmidt, G. A.; Unger, N.; Bauer, S. E. Improved attribution of climate forcing to emissions. Science 2009, 326, 716–718.

    CAS  Google Scholar 

  4. Brandt, A. R.; Heath, G. A.; Kort, E. A.; O’Sullivan, F.; Petron, G.; Jordaan, S. M.; Tans, P.; Wilcox, J.; Gopstein, A. M.; Arent, D. et al. Methane leaks from North American natural gas systems. Science 2014, 343, 733–735.

    CAS  Google Scholar 

  5. Li, X. Y.; Xie, J. J.; Rao, H.; Wang, C.; Tang, J. W. Platinum- and CuOx-decorated TiO2 photocatalyst for oxidative coupling of methane to C2 hydrocarbons in a flow reactor. Angew. Chem., Int. Ed. 2020, 59, 19702–19707.

    CAS  Google Scholar 

  6. Kwon, Y.; Kim, T. Y.; Kwon, G.; Yi, J.; Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 2017, 139, 17694–17699.

    CAS  Google Scholar 

  7. Shan, J. J.; Li, M. W.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551, 605–608.

    CAS  Google Scholar 

  8. Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.

    CAS  Google Scholar 

  9. Luo, L.; Gong, Z. Y.; Xu, Y. X.; Ma, J. N.; Liu, H. F.; Xing, J. L.; Tang, J. W. Binary Au−Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc. 2022, 144, 740–750.

    CAS  Google Scholar 

  10. Lin, J.; Wang, X. D. Rh single atom catalyst for direct conversion of methane to oxygenates. Sci. China Mater. 2018, 61, 758–760.

    CAS  Google Scholar 

  11. Yu, D.; Jia, Y. Y.; Yang, Z.; Zhang, H. W.; Zhao, J. W.; Zhao, Y. B.; Weng, B.; Dai, W. X.; Li, Z. H.; Wang, P. Z. et al. Solar photocatalytic oxidation of methane to methanol with water over RuOx/ZnO/CeO2 nanorods. ACS Sustainable Chem. Eng. 2022, 10, 16–22.

    CAS  Google Scholar 

  12. Lin, S. R.; Tristan, J. B.; Wang, Y.; Bao, J. L. Dry reforming of methane on doped Ni nanoparticles: Feature-assisted optimizations and ranking of doping metals for direct activations of CH4 and CO2. Nano Res. 2022, 15, 9670–9682.

    CAS  Google Scholar 

  13. Mehmood, A.; Chae, S. Y.; Park, E. D. Photoelectrochemical conversion of methane into value-added products. Catalysts 2021, 11, 1387.

    CAS  Google Scholar 

  14. Yang, D. R.; Wang, G. X.; Wang, X. Photo- and thermo-coupled electrocatalysis in carbon dioxide and methane conversion. Sci. China Mater. 2019, 62, 1369–1373.

    Google Scholar 

  15. Ma, M.; Jin, B. J.; Li, P.; Jung, M. S.; Kim, J. I.; Cho, Y.; Kim, S.; Moon, J. H.; Park, J. H. Ultrahigh electrocatalytic conversion of methane at room temperature. Adv. Sci. (Weinh.) 2017, 4, 1700379.

    Google Scholar 

  16. Zakaria, Z.; Kamarudin, S. K. Direct conversion technologies of methane to methanol: An overview. Renew. Sust. Energ. Rev. 2016, 65, 250–261.

    CAS  Google Scholar 

  17. Sivula, K.; Van De Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010.

    CAS  Google Scholar 

  18. Yang, D. R.; Yu, H. D.; He, T.; Zuo, S. W.; Liu, X. Z.; Yang, H. Z.; Ni, B.; Li, H. Y.; Gu, L.; Wang, D. et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 2019, 10, 3844.

    Google Scholar 

  19. Ma, J.; Mao, K. K.; Low, J.; Wang, Z. H.; Xi, D. W.; Zhang, W. Q.; Ju, H. X.; Qi, Z. M.; Long, R.; Wu, X. J. et al. Efficient photoelectrochemical conversion of methane into ethylene glycol by WO3 nanobar arrays. Angew. Chem., Int. Ed. 2021, 60, 9357–9361.

    CAS  Google Scholar 

  20. Kadosh, Y.; Korin, E.; Bettelheim, A. Room-temperature conversion of the photoelectrochemical oxidation of methane into electricity at nanostructured TiO2. Sustain. Energy Fuels 2021, 5, 127–134.

    CAS  Google Scholar 

  21. Amano, F.; Shintani, A.; Tsurui, K.; Mukohara, H.; Ohno, T.; Takenaka, S. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett. 2019, 4, 502–507.

    CAS  Google Scholar 

  22. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    CAS  Google Scholar 

  23. Liu, H. Q.; Zhou, F.; Shi, X. Y.; Shi, Q.; Wu, Z. S. Recent advances and prospects of graphene-based fibers for application in energy storage devices. Acta Phys. Chim. Sin. 2022, 38, 2204017.

    Google Scholar 

  24. Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem., Int. Ed. 2012, 51, 10307–10310.

    CAS  Google Scholar 

  25. Ren, X. D.; Zhao, Q.; McCulloch, W. D.; Wu, Y. Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313–1321.

    CAS  Google Scholar 

  26. Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

    CAS  Google Scholar 

  27. Yang, Y. C.; Yang, Y. W.; Liu, Y. Y.; Zhao, S. L.; Tang, Z. Y. Metal-organic frameworks for electrocatalysis: Beyond their derivatives. Small Sci. 2021, 1, 24.

    CAS  Google Scholar 

  28. Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.

    CAS  Google Scholar 

  29. Zhang, Y.; Xu, M. K.; Wang, Z. G.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924.

    CAS  Google Scholar 

  30. He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.

    Google Scholar 

  31. He, T.; Chen, S. M.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W. P.; Wang, X. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem., Int. Ed. 2018, 57, 3493–3498.

    CAS  Google Scholar 

  32. Zhang, W.; Lai, W. Z.; Cao, R. Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 2017, 117, 3717–3797.

    CAS  Google Scholar 

  33. Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

    Google Scholar 

  34. Johnson, D. G.; Niemczyk, M. P.; Minsek, D. W.; Wiederrecht, G. P.; Svec, W. A.; Gaines, G. L.; Wasielewski, M. R. Photochemical electron transfer in chlorophyll-porphyrin-quinone triads: The role of the porphyrin-bridging molecule. J. Am. Chem. Soc. 1993, 115, 5692–5701.

    CAS  Google Scholar 

  35. Tanaka, T.; Osuka, A. Conjugated porphyrin arrays: Synthesis, properties, and applications for functional materials. Chem. Soc. Rev. 2015, 44, 943–969.

    CAS  Google Scholar 

  36. Guo, J. C.; Zhang, Y. K.; Tian, G. F.; Ji, D. Y.; Qi, S. L.; Wu, D. Z.; Hu, W. P. Electron configurations at 3d orbital of metal ion determining charge transition process in memory devices. Sci. China Mater. 2021, 64, 1713–1722.

    CAS  Google Scholar 

  37. Zhang, R.; Lu, Y.; Wei, L.; Fang, Z. G.; Lu, C. H.; Ni, Y. R.; Xu, Z. Z.; Tao, S. Y.; Li, P. W. Synthesis and conductivity properties of Gd0.8Ca0.2BaCo2O5+δ double perovskite by sol-gel combustion. J. Mater. Sci. Mater. Electron. 2015, 26, 9941–9948.

    CAS  Google Scholar 

  38. Bespalov, I.; Datler, M.; Buhr, S.; Drachsel, W.; Rupprechter, G.; Suchorski, Y. Initial stages of oxide formation on the Zr surface at low oxygen pressure: An in situ FIM and XPS study. Ultramicroscopy 2015, 159, 147–151.

    CAS  Google Scholar 

  39. Liang, P. P.; Tang, H.; Gu, R.; Xue, L.; Chen, D. P.; Wang, W. J.; Yang, Z.; Si, W. L.; Dong, X. C. A pH-responsive zinc(II) metalated porphyrin for enhanced photodynamic/photothermal combined cancer therapy. Sci. China Mater. 2019, 62, 1199–1209.

    CAS  Google Scholar 

  40. Li, W.; He, D.; Hu, G. X.; Li, X.; Banerjee, G.; Li, J. Y.; Lee, S. H.; Dong, Q.; Gao, T. Y.; Brudvig, G. W. et al. Selective CO production by photoelectrochemical methane oxidation on TiO2. ACS Central Sci. 2018, 4, 631–637.

    CAS  Google Scholar 

  41. Yang, W. Q.; Wang, Z. B.; Tan, W. Z.; Peng, R. R.; Wu, X. J.; Lu, Y. L. First principles study on methane reforming over Ni/TiO2 (110) surface in solid oxide fuel cells under dry and wet atmospheres. Sci. China Mater. 2020, 63, 364–374.

    CAS  Google Scholar 

  42. Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2017YFA0700101 and 2016YFA0202801), the National Natural Science Foundation of China (Nos. 22035004 and 22205061), and the XPLORER PRIZE and the China Postdoctoral Science Foundation (No. 2019M660608). We thank Beijing Synchrotron Radiation Facility (BSRF) for providing the EXAFS tests in 1W1B station.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deren Yang or Xun Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Wu, L., Nie, S. et al. Ultrathin zirconium-porphyrin based nanobelts as photo-coupled electrocatalysis for CH4 oxidation to CO. Nano Res. 16, 12641–12646 (2023). https://doi.org/10.1007/s12274-023-5929-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5929-y

Keywords

Navigation