Skip to main content
Log in

MoOx nanoclusters on Mo-doped TiO2 nanosheets with enhanced singlet oxygen generation and sulfide conversion abilities for photocatalytic aerobic oxidative desulfurization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photocatalytic aerobic oxidation desulfurization (PAODS) is a promising and sustainable alternative to conventional, energy-intensive desulfurization techniques for petroleum products. However, its development is greatly plagued by the low capability in generating highly reactive oxygen species and sluggish kinetics of sulfide oxidation of reported photocatalysts. Here we report a class of MoOx nanocluster decorated on ultrathin Mo-doped TiO2 nanosheet (MoOx/MoTiO) catalyst for efficiently facilitating the photocatalytic aerobic oxidation of sulfides. We demonstrate that MoOx/MoTiO can not only promote the generation of highly reactive singlet oxygen (1O2) but also enhance the aerobic conversion of sulfides, which leads to a record dibenzothiophene oxidation activity of 3.90 mmol g−1 h−1. The multiple experimental characterizations and density functional theory calculations collectively reveal that the doped-Mo sites can interact with the photogenerated excitons, enabling directly energy transfer generation of 1O2 through a new exciton modulation mechanism, and the coordination unsaturated MoOx clusters play the role of co-catalyst to enhance the separation of charge carriers, and effectively catalyze the reaction between sulfides and 1O2 to form sulfones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajendran A, Cui T, Fan H, Yang Z, Feng J, Li W. J Mater Chem A, 2020, 8: 2246–2285

    Article  CAS  Google Scholar 

  2. Zhu J, Wu P, Chen L, He J, Wu Y, Wang C, Chao Y, Lu L, He M, Zhu W, Li H. J Energy Chem, 2020, 45: 91–97

    Article  Google Scholar 

  3. Lim XB, Ong WJ. Nanoscale Horiz, 2021, 6: 588–633

    Article  CAS  PubMed  Google Scholar 

  4. Zou J, Lin Y, Wu S, Zhong Y, Yang C. Adv Funct Mater, 2021, 31: 2100442

    Article  CAS  Google Scholar 

  5. Bhadra BN, Jhung SH. Appl Catal B-Environ, 2019, 259: 118021

    Article  CAS  Google Scholar 

  6. Wang S, Zhang X, Chang X, Zong MY, Fan CZ, Guo DX, Xu J, Wang DH, Bu XH. Appl Catal B-Environ, 2021, 298: 120594

    Article  CAS  Google Scholar 

  7. Ye G, Wang H, Chen W, Chu H, Wei J, Wang D, Wang J, Li Y. Angew Chem Int Ed, 2021, 60: 20318–20324

    Article  CAS  Google Scholar 

  8. Zou Y, Wang C, Chen H, Ji H, Zhu Q, Yang W, Chen L, Chen Z, Zhu W. Green Energy Environ, 2021, 6: 169–175

    Article  CAS  Google Scholar 

  9. Zhang S, Liu N, Wang H, Lu Q, Shi W, Wang X. Adv Mater, 2021, 33: 2100576

    Article  CAS  Google Scholar 

  10. Chang X, Yang X, Qiao Y, Wang S, Zhang M, Xu J, Wang D, Bu X. Small, 2020, 16: 1906432

    Article  CAS  Google Scholar 

  11. Song J, Li Y, Cao P, Jing X, Faheem M, Matsuo Y, Zhu Y, Tian Y, Wang X, Zhu G. Adv Mater, 2019, 31: 1902444

    Article  CAS  Google Scholar 

  12. Dong Y, Zhang J, Ma Z, Xu H, Yang H, Yang L, Bai L, Wei D, Wang W, Chen H. Chem Commun, 2019, 55: 13995–13998

    Article  CAS  Google Scholar 

  13. Ahmed I, Kim CU, Jhung SH. Chem Eng J, 2022, 450: 138416

    Article  CAS  Google Scholar 

  14. Jiang W, An X, Xiao J, Yang Z, Liu J, Chen H, Li H, Zhu W, Li H, Dai S. ACS Catal, 2022, 12: 8623–8631

    Article  CAS  Google Scholar 

  15. Gu H, Liu X, Liu X, Ling C, Wei K, Zhan G, Guo Y, Zhang L. Nat Commun, 2021, 12: 5422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang C, Wen Y, Ma J, Dong D, Shen Y, Liu S, Ma H, Zhang Y. Nat Commun, 2021, 12: 320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan C, Wang C, Zhao X, Xu P, Mao F, Yang J, Zhu Y, Yu R, Xiao S, Fang Y, Deng H, Luo Z, Wu J, Li J, Liu S, Xiao S, Zhang L, Guo Y. J Am Chem Soc, 2022, 144: 4942–4951

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Jiang S, Liu W, Zhang X, Zhang Q, Luo Y, Xie Y. Angew Chem Int Ed, 2020, 59: 11093–11100

    Article  CAS  Google Scholar 

  19. Sun X, Chen X, Fu C, Yu Q, Zheng XS, Fang F, Liu Y, Zhu J, Zhang W, Huang W. Nat Commun, 2022, 13: 6677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi Y, Yang Z, Shi L, Li H, Liu X, Zhang X, Cheng J, Liang C, Cao S, Guo F, Liu X, Ai Z, Zhang L. Environ Sci Technol, 2022, 56: 14478–14486

    Article  CAS  PubMed  Google Scholar 

  21. Lin F, Wang D, Jiang Z, Ma Y, Li J, Li R, Li C. Energy Environ Sci, 2012, 5: 6400–6406

    Article  CAS  Google Scholar 

  22. Zeng X, Xiao X, Li Y, Chen J, Wang H. Appl Catal B-Environ, 2017, 209: 98–109

    Article  CAS  Google Scholar 

  23. Shafiq I, Hussain M, Rashid R, Shafique S, Akhter P, Yang W, Ahmed A, Nawaz Z, Park YK. Chem Eng J, 2021, 420: 130529

    Article  CAS  Google Scholar 

  24. Ortiz-Bustos J, Hierro I, Pérez Y. Ceramics Int, 2022, 48: 6905–6916

    Article  CAS  Google Scholar 

  25. Mahboob I, Shafiq I, Shafique S, Akhter P, Amjad US, Hussain M, Park YK. Chem Eng J, 2022, 441: 136063

    Article  CAS  Google Scholar 

  26. Amiri O, Beshkar F, Ahmed SS, Mahmood PH, Dezaye AA. Int J Hydrogen Energy, 2021, 46: 6547–6560

    Article  CAS  Google Scholar 

  27. Cui J, Wang G, Liu W, Ke P, Tian Q, Li X, Tian Y. Fuel, 2021, 290: 120066

    Article  CAS  Google Scholar 

  28. Bagheri M, Masoomi MY, Morsali A. ACS Catal, 2017, 7: 6949–6956

    Article  CAS  Google Scholar 

  29. Zhou X, Wang T, Zhang L, Che S, Liu H, Liu S, Wang C, Su D, Teng Z. Appl Catal B-Environ, 2022, 316: 121614

    Article  CAS  Google Scholar 

  30. Yu J, Low J, Xiao W, Zhou P, Jaroniec M. J Am Chem Soc, 2014, 136: 8839–8842

    Article  CAS  PubMed  Google Scholar 

  31. Yu J, Qi L, Jaroniec M. J Phys Chem C, 2010, 114: 13118–13125

    Article  CAS  Google Scholar 

  32. Zhou S, Jang H, Qin Q, Hou L, Kim MG, Liu S, Liu X, Cho J. Angew Chem Int Ed, 2022, 61: e202212196

    Article  CAS  Google Scholar 

  33. Zou J, Lin Y, Yang C. Sci China Chem, 2023, 66: 1211–1220

    Article  CAS  Google Scholar 

  34. Wang YG, Cantu DC, Lee MS, Li J, Glezakou VA, Rousseau R. J Am Chem Soc, 2016, 138: 10467–10476

    Article  CAS  PubMed  Google Scholar 

  35. Zhang H, Zhang P, Qiu M, Dong J, Zhang Y, Lou XWD. Adv Mater, 2018, 31: 1804883

    Article  Google Scholar 

  36. Yang H, Luo M, Lu S, Zhang Q, Chao Y, Lv F, Zhu L, Bai L, Yang L, Wang W, Wei D, Liang Y, Gu L, Chen H, Guo S. Chem, 2022, 8: 2460–2471

    Article  Google Scholar 

  37. Sales RN, Nunes CD. ChemCatChem, 2022, 14: e202200800

    Article  CAS  Google Scholar 

  38. Gelderman K, Lee L, Donne SW. J Chem Educ, 2007, 84: 685–688

    Article  CAS  Google Scholar 

  39. Nosaka Y, Nosaka AY. Chem Rev, 2017, 117: 11302–11336

    Article  CAS  PubMed  Google Scholar 

  40. Xie S, Lai K, Gu C, Jiang T, Zhou L, Zheng X, Shen X, Han J, Zhou J. Mater, Today Nano, 2022, 18: 100179

    Article  CAS  Google Scholar 

  41. Ohkubo K, Fujimoto A, Fukuzumi S. J Am Chem Soc, 2013, 135: 5368–5371

    Article  CAS  PubMed  Google Scholar 

  42. Yang H, Bai J, Zhang Q, Yang L, Bai L, Wei D, Wang W, Liang Y, Gu L, Chen H, Guo S. Chem Sci, 2022, 13: 14063–14069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schweitzer C, Schmidt R. Chem Rev, 2003, 103: 1685–1758

    Article  CAS  PubMed  Google Scholar 

  44. Sun X, Luo X, Jin S, Zhang X, Wang H, Shao W, Wu X, Xie Y. Natl Sci Rev, 2022, 9: nwac026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waiskopf N, Ben-Shahar Y, Galchenko M, Carmel I, Moshitzky G, Soreq H, Banin U. Nano Lett, 2016, 16: 4266–4273

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Jiang S, Chen S, Li D, Zhang X, Shao W, Sun X, Xie J, Zhao Z, Zhang Q, Tian Y, Xie Y. Adv Mater, 2016, 28: 6940–6945

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21808098, 52261135633, 52025133), the National Key R&D Program of China (2022YFE0128500), the Project of Shandong Province Higher Educational Science (2022KJ122), and Yantai Science and Technology Development Program (2019XDHZ106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huawei Yang or Shaojun Guo.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1728_MOESM1_ESM.pdf

MoOx nanoclusters on Mo-doped TiO2 nanosheets with enhanced singlet oxygen generation and sulfide conversion abilities for photocatalytic aerobic oxidative desulfurization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Zhao, X., Wang, D. et al. MoOx nanoclusters on Mo-doped TiO2 nanosheets with enhanced singlet oxygen generation and sulfide conversion abilities for photocatalytic aerobic oxidative desulfurization. Sci. China Chem. 67, 408–414 (2024). https://doi.org/10.1007/s11426-023-1728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1728-6

Navigation