Skip to main content
Log in

Composite laminar membranes for electricity generation from water evaporation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Harvesting clean energy from water evaporation has been extensively investigated due to its sustainability. To achieve high efficiency, energy conversion materials should contain multiple features which are difficult to be simultaneously obtained from single-component materials. Here we use composite laminar membranes assembled by nanosheets of graphene oxide and mica, and find a sustained power density induced by water evaporation that is two orders of magnitude larger than that from membranes made by either of the components. The power output is attributed to selective proton transport driven by water evaporation through the interlayer nanochannels in the membranes. This process relies on the synergistic effects from negatively charged and hydrophilic mica surfaces that are important for proton selectivity and water transport, and the tunable electrical conductivity of graphene oxide that provides optimized internal resistance. The demonstrated composite membranes offer a strategy of enhancing power generation by combining the advantages from each of their components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chi, J. G.; Liu, C. R.; Che, L. F.; Li, D. J.; Fan, K.; Li, Q.; Yang, W. H.; Dong, L. X.; Wang, G. F.; Wang, Z. L. Harvesting water-evaporation-induced electricity based on liquid–solid triboelectric nanogenerator. Adv. Sci. 2022, 9, 2201586.

    Article  CAS  Google Scholar 

  2. Yoon, S. G.; Yang, Y.; Yoo, J.; Jin, H. D.; Lee, W. H.; Park, J.; Kim, Y. S. Natural evaporation-driven ionovoltaic electricity generation. ACS Appl. Electron. Mater. 2019, 1, 1746–1751.

    Article  CAS  Google Scholar 

  3. Feng, Z. H.; Zhu, R. B.; Chen, F. D.; Zhu, Y. Z.; Zhou, Y. Z.; Guan, P. Y.; Kuo, Y. C.; Fan, J. J.; Wan, T.; Li, M. Y. et al. Recent advances in water-induced electricity generation based on 2D materials: A review. J. Mater. Res. 2023, 38, 1757–1779.

    Article  CAS  Google Scholar 

  4. Yin, J.; Zhou, J. X.; Fang, S. M.; Guo, W. L. Hydrovoltaic energy on the way. Joule 2020, 4, 1852–1855.

    Article  Google Scholar 

  5. Wang, X. F.; Lin, F. R.; Wang, X.; Fang, S. M.; Tan, J.; Chu, W. C.; Rong, R.; Yin, J.; Zhang, Z. H.; Liu, Y. P. et al. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902–4927.

    Article  CAS  Google Scholar 

  6. Kaur, M.; Nagao, T. Minireview on solar desalination and hydropower generation by water evaporation: Recent challenges and perspectives in materials science. Energy Fuels 0222, 36, 11443–11456.

    Article  Google Scholar 

  7. Zhang, Z. H.; Li, X. M.; Yin, J.; Xu, Y.; Fei, W. W.; Xue, M. M.; Wang, Q.; Zhou, J. X.; Guo, W. L. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119.

    Article  CAS  Google Scholar 

  8. Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

    Article  CAS  Google Scholar 

  9. Qin, Y. S.; Wang, Y. S.; Sun, X. Y.; Li, Y. J.; Xu, H.; Tan, Y. S.; Li, Y.; Song, T.; Sun, B. Q. Constant electricity generation in nanostructured silicon by evaporation-driven water flow. Angew. Chem., Int. Ed. 2020, 59, 10619–10625.

    Article  CAS  Google Scholar 

  10. Ding, T. P.; Liu, K.; Li, J.; Xue, G. B.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 2017, 27, 1700551.

    Article  Google Scholar 

  11. Ma, Q. L.; He, Q. Y.; Yin, P. F.; Cheng, H. F.; Cui, X. Y.; Yun, Q. B.; Zhang, H. Rational design of MOF-based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv. Mater. 2020, 32, 2003720.

    Article  CAS  Google Scholar 

  12. Yun, T. G.; Bae, J.; Rothschild, A.; Kim, I. D. Transpiration driven electrokinetic power generator. ACS Nano 2019, 13, 12703–12709.

    Article  CAS  Google Scholar 

  13. Zhou, X. B.; Zhang, W. L.; Zhang, C. L.; Tan, Y.; Guo, J. C.; Sun, Z. N.; Deng, X. Harvesting electricity from water evaporation through microchannels of natural wood. ACS Appl. Mater. Interfaces 2020, 12, 11232–11239.

    Article  CAS  Google Scholar 

  14. Garemark, J.; Ram, F.; Liu, L. L.; Sapouna, I.; Ruiz, M. C. F.; Larsson, P. T.; Li, Y. Y. Advancing hydrovoltaic energy harvesting from wood through cell wall nanoengineering. Adv. Funct. Mater. 2023, 33, 2208933.

    Article  CAS  Google Scholar 

  15. Kumar, R.; Kay, G.; Beaton, G.; Liu, G. J.; Stamplecoskie, K. Tuning the functionalization of graphite for hydrovoltaic power generation. ACS Appl. Mater. Interfaces 2023, 15, 7511–7517.

    Article  CAS  Google Scholar 

  16. Zhao, X. H.; Xiong, Z. J.; Qiao, Z.; Bo, X.; Pang, D.; Sun, J. C.; Bian, J. M. Robust and flexible wearable generator driven by water evaporation for sustainable and portable self-power supply. Chem. Eng. J. 2022, 434, 134671.

    Article  CAS  Google Scholar 

  17. Li, J. Y.; Dai, Y. X.; Jiao, S. P.; Liu, X. H. MOFs/ketjen black-coated filter paper for spontaneous electricity generation from water evaporation. Polymers (Basel) 2022, 14, 3509.

    Article  CAS  Google Scholar 

  18. Qi, X.; Miao, T. T.; Chi, C.; Zhang, G.; Zhang, C.; Du, Y. Z.; An, M.; Ma, W. G.; Zhang, X. Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment. Nano Energy 2020, 77, 105096.

    Article  CAS  Google Scholar 

  19. Li, L. H.; Hao, M. M.; Yang, X. Q.; Sun, F. Q.; Bai, Y. Y.; Ding, H. Y.; Wang, S. Q.; Zhang, T. Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy 2020, 72, 104663.

    Article  CAS  Google Scholar 

  20. Ji, B. X.; Chen, N.; Shao, C. X.; Liu, Q. W.; Gao, J.; Xu, T.; Cheng, H. H.; Qu, L. T. Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@TiO2 nanowires. J. Mater. Chem. A 2019, 7, 6766–6772.

    Article  CAS  Google Scholar 

  21. Yoon, S. G.; Jin, H. D.; Lee, W. H.; Han, J.; Cho, Y. H.; Kim, Y. S. Evaporative electrical energy generation via diffusion-driven ion-electron-coupled transport in semiconducting nanoporous channel. Nano Energy 2021, 80, 105522.

    Article  CAS  Google Scholar 

  22. Singh, M.; Yadav, A.; Kumar, S.; Agarwal, P. Annealing induced electrical conduction and band gap variation in thermally reduced graphene oxide films with different sp2/sp3 fraction. Appl. Surf. Sci. 2015, 326, 236–242.

    Article  CAS  Google Scholar 

  23. Mitra, S.; Kamaja, C. K.; Katiyar, M. Facile formation of porous, multilayer reduced graphene oxide electrodes using electrophoretic deposition and flash sintering. Carbon 2023, 202, 186–195.

    Article  CAS  Google Scholar 

  24. Gudarzi, M. M. Colloidal stability of graphene oxide: Aggregation in two dimensions. Langmuir 2016, 32, 5058–5068.

    Article  CAS  Google Scholar 

  25. Tivony, R.; Klein, J. Probing the surface properties of gold at low electrolyte concentration. Langmuir 2016, 32, 7346–7355.

    Article  CAS  Google Scholar 

  26. Li, A. T.; Han, K.; Zhou, Y. H.; Ye, H. Q.; Liu, G. G.; Kung, H. H. Incorporating multivalent metal cations into graphene oxide: Towards highly-aqueous-stable free-standing membrane via vacuum filtration with polymeric filters. Mater. Today Commun. 2017, 11, 139–146.

    Article  CAS  Google Scholar 

  27. Secchi, E.; Niguès, A.; Jubin, L.; Siria, A.; Bocquet, L. Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes. Phys. Rev. Lett. 2016, 116, 154501.

    Article  Google Scholar 

  28. Chai, L.; Klein, J. Interactions between molecularly smooth gold and mica surfaces across aqueous solutions. Langmuir 2019, 25, 11533–11540.

    Article  Google Scholar 

  29. Leng, Y. S.; Cummings, P. T. Hydration structure of water confined between mica surfaces. J. Chem. Phys. 2006, 124, 074711.

    Article  Google Scholar 

  30. Pastré, D.; Piétrement, O.; Fusil, S.; Landousy, F.; Jeusset, J.; David, M. O.; Hamon, L.; Le Cam, E.; Zozime, A. Adsorption of DNA to mica mediated by divalent counterions: A theoretical and experimental study. Biophys. J. 2003, 85, 2507–2518.

    Article  Google Scholar 

  31. Linse, P.; Claesson, P. M. Modeling of bottle-brush polymer adsorption onto mica and silica surfaces: Effect of side-chain length. Macromolecules 2010, 43, 2076–2083.

    Article  CAS  Google Scholar 

  32. Gomez, S. A. S.; Jordan, D. S.; Troiano, J. M.; Geiger, F. M. Uranyl adsorption at the muscovite (mica)/water interface studied by second harmonic generation. Environ. Sci. Technol. 2012, 46, 11154–11161.

    Article  Google Scholar 

  33. Perram, J. W.; Stiles, P. J. On the nature of liquid junction and membrane potentials. Phys. Chem. Chem. Phys. 2006, 8, 4200–4213.

    Article  CAS  Google Scholar 

  34. Wang, H.; Su, L. M.; Yagmurcukardes, M.; Chen, J. W.; Jiang, Y.; Li, Z.; Quan, A. C.; Peeters, F. M.; Wang, C.; Geim, A. K. et al. Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores. Nano Lett. 2020, 20, 8634–8639.

    Article  CAS  Google Scholar 

  35. Van Der Heyden, F. H. J.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 2006, 6, 2232–2237.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Key Research and Development Program of China (No. 2019YFA0705400), the National Natural Science Foundation of China (Nos. 21972121 and 22021001), and the Fundamental Research Funds for the Central Universities (No. 20720210017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yuan, G., Zhou, H. et al. Composite laminar membranes for electricity generation from water evaporation. Nano Res. 17, 307–311 (2024). https://doi.org/10.1007/s12274-023-5906-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5906-5

Keywords

Navigation