Skip to main content
Log in

Interface-induced polymerization strategy for constructing titanium dioxide embedded carbon porous framework with enhanced chemical immobilization towards lithium polysulfides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The shuttle effect induced by soluble lithium polysulfides (LiPSs) is known as one of the crucial issues that limit the practical applications of lithium-sulfur (Li-S) batteries. Herein, a titanium dioxide nanoparticle embedded in nitrogen-doped porous carbon nanofiber (TiO2@NCNF) composite is constructed via an interface-induced polymerization strategy to serve as an ideal sulfur host. Under the protection of the nanofiber walls, the uniformly dispersed TiO2 nanocrystalline can act as capturing centers to constantly immobilize LiPSs towards durable sulfur chemistry. Besides, the mesoporous microstructure in the fibrous framework endows the TiO2@NCNF host with strong physical reservation for sulfur and LiPSs, sufficient pathways for electron/ion transfer, and excellent endurance for volume change. As expected, the sulfur-loaded TiO2@NCNF composite electrode presents a fabulous rate performance and long cycle lifespan (capacity fading rate of 0.062% per cycle over 500 cycles) at 2.0 C. Furthermore, the assembled Li-S batteries harvest superb areal capacity and cycling stability even under high sulfur loading and lean electrolyte conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  CAS  ADS  Google Scholar 

  2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614–2624.

    Article  CAS  Google Scholar 

  4. Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

    Article  CAS  PubMed  Google Scholar 

  5. Van Noorden, R. The rechargeable revolution: A better battery. Nature 2014, 507, 26–28.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Ding, Y. F.; Cheng, Q. S.; Wu, J. H.; Yan, T. R.; Shi, Z. X.; Wang, M. L.; Yang, D. Z.; Wang, P.; Zhang, L.; Sun, J. Y. Enhanced dual-directional sulfur redox via a biotemplated single-atomic Fe-N2 mediator promises durable Li-S batteries. Adv. Mater. 2022, 34, 2202256.

    Article  CAS  Google Scholar 

  7. Ji, X. L.; Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 2010, 20, 9821–9826.

    Article  CAS  Google Scholar 

  8. Li, G. R.; Chen, Z. W.; Lu, J. Lithium-sulfur batteries for commercial applications. Chem 2018, 4, 3–7.

    Article  CAS  Google Scholar 

  9. Ouyang, Y.; Zong, W.; Zhu, X. B.; Mo, L. L.; Chao, G. J.; Fan, W.; Lai, F. L.; Miao, Y. E.; Liu, T. X.; Yu, Y. A universal spinning-coordinating strategy to construct continuous metal-nitrogen-carbon heterointerface with boosted lithium polysulfides immobilization for 3D-printed Li-S batteries. Adv. Sci. 2022, 9, 2203181.

    Article  CAS  Google Scholar 

  10. Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

    Article  Google Scholar 

  11. Xu, J.; Zhang, H.; Yu, F. T.; Cao, Y. J.; Liao, M. C.; Dong, X. L.; Wang, Y. G. Realizing all-climate Li-S batteries by using a porous sub-nano aromatic framework. Angew. Chem., Int. Ed. 2022, 61, e202211933.

    Article  CAS  ADS  Google Scholar 

  12. Lei, J.; Fan, X. X.; Liu, T.; Xu, P.; Hou, Q.; Li, K.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F.; Chen, J. J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries. Nat. Commun. 2022, 13, 202.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Cao, K. Z.; Liu, H. Q.; Li, Y.; Wang, Y. J.; Jiao, L. F. Encapsulating sulfur in 5-MnO2 at room temperature for Li-S battery cathode. Energy Storage Mater. 2017, 9, 78–84.

    Article  Google Scholar 

  14. Huang, X. K.; Shi, K. Y.; Yang, J.; Mao, G.; Chen, J. H. MnO2-GO double-shelled sulfur (S@MnO2@GO) as a cathode for Li-S batteries with improved rate capability and cyclic performance. J. Power Sources 2017, 356, 72–79.

    Article  CAS  ADS  Google Scholar 

  15. Li, Q.; Ma, Z. P.; Zhao, J. H.; Shen, K.; Shi, T. Q.; Xie, Y. Z.; Fan, Y. Q.; Qin, X. J.; Shao, G. J. A flexible self-supporting ultralong MnO2 nanowires-expanded graphite nanosheets current collector with enhanced catalytic reaction kinetics for high-loading lithium-sulfur batteries. J. Power Sources 2022, 521, 230929.

    Article  CAS  Google Scholar 

  16. Lee, J.; Moon, J. H. Polyhedral TiO2 particle-based cathode for Li-S batteries with high volumetric capacity and high performance in lean electrolyte. Chem. Eng. J. 2020, 399, 125670.

    Article  CAS  Google Scholar 

  17. Yu, M. P.; Ma, J. S.; Song, H. Q.; Wang, A. J.; Tian, F. Y.; Wang, Y. S.; Qiu, H.; Wang, R. M. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 1495–1503.

    Article  CAS  Google Scholar 

  18. Cai, J. S.; Sun, Z. T.; Cai, W. L.; Wei, N.; Fan, Y. X.; Liu, Z. F.; Zhang, Q.; Sun, J. Y. A robust ternary heterostructured electrocatalyst with conformal graphene chainmail for expediting bidirectional sulfur redox in Li-S batteries. Adv. Funct. Mater. 2021, 31, 2100586.

    Article  CAS  Google Scholar 

  19. Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

    Article  CAS  PubMed  Google Scholar 

  20. Xin, S. S.; Liu, T.; Li, J.; Cui, H. T.; Liu, Y. Y.; Liu, K. H.; Yang, Y. Z.; Wang, M. R. Coupling of oxygen vacancies and heterostructure on Fe3O4 via an anion doping strategy to boost catalytic activity for lithium-sulfur batteries. Small 2023, 2207924.

    Google Scholar 

  21. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    Article  CAS  Google Scholar 

  22. Rehman, S.; Guo, S. J.; Hou, Y. L. Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery. Adv. Mater. 2016, 28, 3167–3172.

    Article  CAS  PubMed  Google Scholar 

  23. Deng, S. G.; Guo, T. Z.; Heier, J.; Zhang, C. F. Unraveling polysulfide’s adsorption and electrocatalytic conversion on metal oxides for Li-S batteries. Adv. Sci. 2023, 10, 2204930.

    Article  CAS  Google Scholar 

  24. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

    Article  Google Scholar 

  25. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  26. Li, W. W.; Yang, B.; Pang, R. X.; Zhang, M. Y. Sandwiched aramid nanofiber/Al2O3-coated polyolefin separators for advanced lithium-sulfur batteries. Compos. Commun. 2023, 38, 101489.

    Article  Google Scholar 

  27. Zhen, M. M.; Jiang, K. L.; Guo, S. Q.; Shen, B. X.; Liu, H. L. Suitable lithium polysulfides diffusion and adsorption on CNTs@TiO2-bronze nanosheets surface for high-performance lithium-sulfur batteries. Nano Res. 2022, 15, 933–941.

    Article  CAS  ADS  Google Scholar 

  28. Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

    Article  CAS  ADS  Google Scholar 

  29. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    Article  CAS  Google Scholar 

  30. Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

    Article  PubMed  ADS  Google Scholar 

  31. Zong, W.; Gao, H. Q.; Ouyang, Y.; Chu, K. B.; Guo, H. L.; Zhang, L. Q.; Zhang, W.; Chen, R. W.; Dai, Y. H.; Guo, F. et al. Bio-inspired aerobic-hydrophobic janus interface on partially carbonized iron heterostructure promotes bifunctional nitrogen fixation. Angew. Chem., Int. Ed. 2023, 62, e202218122.

    Article  CAS  Google Scholar 

  32. Liu, K.; Gu, S.; Yuan, H. M.; Wang, H.; Tan, W.; Jiang, F.; Chen, J. J.; Liao, K. M.; Yan, C. L.; Yang, F. et al. Hierarchical mesoporous heteroatom-doped carbon accelerating the adsorption and conversion of polysulfide for high performance lithium-sulfur batteries. Compos. Commun. 2022, 30, 101079.

    Article  Google Scholar 

  33. Zong, W.; Chui, N. B.; Tian, Z. H.; Li, Y. Y.; Yang, C.; Rao, D. W.; Wang, W.; Huang, J. J.; Wang, J. T.; Lai, F. L. et al. Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors. Adv. Sci. 2021, 8, 2004142.

    Article  CAS  Google Scholar 

  34. Li, X. T.; Chou, J.; Zhu, Y. H.; Wang, W. P.; Xin, S.; Guo, Y. G. Hydrogen isotope effects: A new path to high-energy aqueous rechargeable Li/Na-ion batteries. eScience, in press, https://doi.org/10.1016/j.esci.2023.100121.

  35. Li, Y.; Wang, X. Z.; Sun, M. H.; Xiao, J.; Zhang, B. L.; Ai, L. S.; Zhao, Z. B.; Qiu, J. S. CoSe nanoparticle embedded B, N-codoped carbon nanotube array as a dual-functional host for a high-performance Li-S full battery. ACS Nano 2022, 16, 17008–17020.

    Article  CAS  PubMed  Google Scholar 

  36. Fang, M. M.; Chen, Z. M.; Liu, Y.; Quan, J. P.; Yang, C.; Zhu, L. C.; Xu, Q. B.; Xu, Q. Design and synthesis of novel sandwich-type C@TiO2@C hollow microspheres as efficient sulfur hosts for advanced lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 1630–1638.

    Article  CAS  Google Scholar 

  37. Liu, M.; Deng, N. P.; Ju, J. G.; Fan, L. L.; Wang, L. Y.; Li, Z. J.; Zhao, H. J.; Yang, G.; Kang, W. M.; Yan, J. et al. A review: Electrospun nanofiber materials for lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1905467.

    Article  CAS  Google Scholar 

  38. Zhang, Y. S.; Zhang, P.; Li, B.; Zhang, S. J.; Liu, K. L.; Hou, R. H.; Zhang, X. L.; Silva, S. R. P.; Shao, G. S. Vertically aligned graphene nanosheets on multi-yolk/shell structured TiC@C nanofibers for stable Li-S batteries. Energy Storage Mater. 2020, 27, 159–168.

    Article  Google Scholar 

  39. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

    Article  CAS  Google Scholar 

  40. Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

    Article  CAS  Google Scholar 

  41. Li, C. P.; Qiu, M.; Li, R. L.; Li, X.; Wang, M. X.; He, J. B.; Lin, G. G.; Xiao, L. R.; Qian, Q. R.; Chen, Q. H. et al. Electrospinning engineering enables high-performance sodium-ion batteries. Adv. Fiber Mater. 2022, 4, 43–65.

    Article  CAS  Google Scholar 

  42. Zheng, Z. M.; Li, Z.; Yang, Z. Hierarchical carbon fibers integrated cathode confining high-loading sulfur for Li-S batteries. Compos. Commun. 2022, 32, 101192.

    Article  MathSciNet  Google Scholar 

  43. Tan, K.; Tan, Z. L.; Liu, S.; Zhao, G. Q.; Liu, Y.; Hou, L. R.; Yuan, C. Z. Synergistic design of core-shell V3S4@C hosts and homogeneous catalysts promoting polysulfide chemisorption and conversion for Li-S batteries. J. Mater. Chem. A 2023, 11, 2233–2245.

    Article  CAS  Google Scholar 

  44. Zong, W.; Guo, H. L.; Ouyang, Y.; Mo, L. L.; Zhou, C. Y.; Chao, G. J.; Hofkens, J.; Xu, Y.; Wang, W.; Miao, Y. E. et al. Topochemistry-driven synthesis of transition-metal selenides with weakened van der waals force to enable 3D-printed Na-ion hybrid capacitors. Adv. Funct. Mater. 2022, 32, 2110016.

    Article  CAS  Google Scholar 

  45. Wang, Z.; Zou, Y.; Li, Y. W.; Cheng, Y. Y. Metal-containing polydopamine nanomaterials: Catalysis, energy, and theranostics. Small 2020, 16, 1907042.

    Article  CAS  Google Scholar 

  46. Su, Y. J.; Li, W. X.; Yuan, L.; Chen, C. X.; Pan, H.; Xie, G. Z.; Conta, G.; Ferrier, S.; Zhao, X.; Chen, G. R. et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021, 89, 106321.

    Article  CAS  Google Scholar 

  47. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  48. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  49. Zhao, C.; Xu, G. L.; Yu, Z.; Zhang, L. C.; Hwang, I.; Mo, Y. X.; Ren, Y. X.; Cheng, L.; Sun, C. J.; Ren, Y. et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2021, 16, 166–173.

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    Article  CAS  PubMed  Google Scholar 

  51. Chen, R. X.; Zhou, Y. C.; Li, X. D. Cotton-derived Fe/Fe3C-encapsulated carbon nanotubes for high-performance lithium-sulfur batteries. Nano Lett. 2022, 22, 1217–1224.

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Dai, Y. H.; Zhang, C. Y.; Zhang, W.; Cui, L. M.; Ye, C. M.; Hong, X. F.; Li, J. H.; Chen, R. W.; Zong, W.; Gao, X. et al. Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators. Angew. Chem., Int. Ed. 2023, 62, e202301192.

    Article  CAS  Google Scholar 

  53. Luo, J.; Liu, X. F.; Lei, W.; Jia, Q. L.; Zhang, S. W.; Zhang, H. J. Self-standing lotus root-like host materials for high-performance lithium-sulfur batteries. Adv. Fiber Mater. 2022, 4, 1656–1668.

    Article  CAS  Google Scholar 

  54. Wang, P. F.; Dai, X.; Xu, P.; Hu, S. J.; Xiong, X. Y.; Zou, K. Y.; Guo, S. W.; Sun, J. J.; Zhang, C. F.; Liu, Y. N. et al. Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li-S batteries. elccinnee 2023, 3, 100088.

    Google Scholar 

  55. Guo, M.; Zhu, H. Y.; Wan, P. F.; Xu, F.; Wang, C. H.; Lu, S. J.; Zhang, Y. F.; Fan, H. S.; Xu, J. Freestanding and ultra-flexible PAN/ZIF-67 hybrid membrane with controlled porosity for high-performance and high-safety lithium batteries separator. Adv. Fiber Mater. 2022, 4, 1511–1524.

    Article  CAS  Google Scholar 

  56. Zhu, J. X.; Xia, L. X.; Yu, R. H.; Lu, R. H.; Li, J. T.; He, R. H.; Wu, Y. C.; Zhang, W.; Hong, X. F.; Chen, W. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 2022, 144, 15529–15538.

    Article  CAS  PubMed  Google Scholar 

  57. Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.

    Article  CAS  ADS  Google Scholar 

  58. Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

    Article  CAS  Google Scholar 

  59. Wang, J. W.; Cao, S. F.; Yang, L. K.; Zhang, Y.; Xing, K.; Lu, X. Q.; Xu, J. Metastable marcasite NiSe2 nanodendrites on carbon fiber clothes to suppress polysulfide shuttling for high-performance lithium-sulfur batteries. Nanoscale 2021, 13, 16487–16498.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (No. 22075042), Shanghai Rising-Star Program (No. 22QA1400300), the Natural Science Foundation of Shanghai (No. 20ZR1401400), the Shanghai Scientific and Technological Innovation Project (No. 22520710100), the Innovation Program of Shanghai Municipal Education Commission (No. 2021-01-07-00-03-E00108), the Fundamental Research Funds for the Central Universities, and the Donghua University (DHU) Distinguished Young Professor Program (No. LZB2021002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zong or Yue-E. Miao.

Electronic Supplementary Material

12274_2023_5894_MOESM1_ESM.pdf

Interface-induced polymerization strategy for constructing titanium dioxide embedded carbon porous framework with enhanced chemical immobilization towards lithium polysulfides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Y., Li, X., Zhu, J. et al. Interface-induced polymerization strategy for constructing titanium dioxide embedded carbon porous framework with enhanced chemical immobilization towards lithium polysulfides. Nano Res. 17, 1473–1481 (2024). https://doi.org/10.1007/s12274-023-5894-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5894-5

Keywords

Navigation