Skip to main content
Log in

Enhancing the powering ability of triboelectric nanogenerator through output signal’s management strategies

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a new branch of efficient and low-cost mechanical energy conversion technology, triboelectric nanogenerator (TENG) is a potential solution to provide a long-term power supply for the Internet of Things (IoT) sensors and portable electronic devices. However, due to inherent working properties of TENG itself such as extremely high internal impedance, pulse, and alternating current (AC) output, TENG can not directly supply power to loads such as batteries efficiently. Based on these, we describe TENG’s performance from a new perspective of powering ability. It consists of two aspects: the ability to transport charge effectively and the ability to output high power quality current steadily. In order to push forward the developments and applications of TENG, it is necessary to improve its power supply capacity from different perspectives. Fortunately, in recent years, a variety of output signal’s management strategies aiming at effectively managing the generated electricity and significantly improving powering ability of TENG have obtained significantly progress. Herein, this paper discusses the working mechanisms and different load characteristics of TENG at first to clarify the electric performance of TENG. Then, on basis of theoretical analysis, the output signal’s management strategies are elaborated from four aspects: improving the cycle output electricity of TENG, increasing the surface charge density of TENG, improving the power quality of TENG-based energy harvesting system, promoting the application of TENG through integrated circuit (IC) technology and TENG network, and the relevant principles and applications are discussed systematically. Finally, the advantages and disadvantages of the above output signal’s management strategies are summarized and discussed, and the future development of the output signal’s management strategies for TENG is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of things (IoT): A vision, architectural elements, and future directions. Fut. Gener. Comp. Syst. 2013, 29, 1645–1660.

    Article  Google Scholar 

  2. Lee, I.; Lee, K. The internet of things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440.

    Article  Google Scholar 

  3. Zou, Y. J.; Raveendran, V.; Chen, J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 2020, 77, 105303.

    Article  CAS  Google Scholar 

  4. Wang, H. B.; Han, M. D.; Song, Y.; Zhang, H. X. Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy 2021, 81, 105627.

    Article  CAS  Google Scholar 

  5. Wang, Z. L. Self-powered nanotech. Sci. Am. 2008, 298, 82–87.

    Article  Google Scholar 

  6. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

    Article  CAS  Google Scholar 

  7. Hasan, M. A. M.; Wang, Y. H.; Bowen, C. R.; Yang, Y. 2D nanomaterials for effective energy scavenging. Nano-Micro Lett. 2021, 13, 82.

    Article  Google Scholar 

  8. Kim, W. G.; Kim, D. W.; Tcho, I. W.; Kim, J. K.; Kim, M. S.; Choi, Y. K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287.

    Article  CAS  Google Scholar 

  9. Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem., Int. Ed. 2012, 51, 9994–10024.

    Article  CAS  Google Scholar 

  10. Kang, D. H. P.; Chen, M. J.; Ogunseitan, O. A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 2013, 47, 5495–5503.

    Article  CAS  Google Scholar 

  11. Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.

    Article  CAS  Google Scholar 

  12. Zi, Y. L.; Lin, L.; Wang, J.; Wang, S. H.; Chen, J.; Fan, X.; Yang, P. K.; Yi, F.; Wang, Z. L. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 2015, 27, 2340–2347.

    Article  CAS  Google Scholar 

  13. Gallup, D. L. Production engineering in geothermal technology: A review. Geothermics 2009, 38, 326–334.

    Article  Google Scholar 

  14. Boyaghchi, F. A.; Chavoshi, M.; Sabeti, V. Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid. Energy 2015, 91, 685–699.

    Article  CAS  Google Scholar 

  15. Chen, N.; Liu, M. Y.; Zhou, W. D. Fouling and corrosion properties of SiO2 coatings on copper in geothermal water. Ind. Eng. Chem. Res. 2012, 51, 6001–6017.

    Article  Google Scholar 

  16. Olasolo, P.; Juárez, M. C.; Morales, M. P.; D’Amico, S.; Liarte, I. A. Enhanced geothermal systems (EGS): A review. Renew. Sust. Energ. Rev. 2016, 56, 133–144.

    Article  Google Scholar 

  17. Lin, M. F.; Parida, K.; Cheng, X.; Lee, P. S. Flexible superamphiphobic film for water energy harvesting. Adv. Mater. Technol. 2017, 2, 1600186.

    Article  Google Scholar 

  18. Mehdizadeh, S.; Yasukawa, M.; Kuno, M.; Kawabata, Y.; Higa, M. Evaluation of energy harvesting from discharged solutions in a salt production plant by reverse electrodialysis (RED). Desalination 2019, 467, 95–102.

    Article  CAS  Google Scholar 

  19. Moran, E. F.; Lopez, M. C.; Moore, N.; Müller, N.; Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898.

    Article  CAS  Google Scholar 

  20. Xiong, J. Q.; Lin, M. F.; Wang, J. X.; Gaw, S. L.; Parida, K.; Lee, P. S. Wearable all-fabric-based triboelectric generator for water energy harvesting. Adv. Energy Mater. 2017, 7, 1701243.

    Article  Google Scholar 

  21. Yin, J.; Zhou, J. X.; Fang, S. M.; Guo, W. L. Hydrovoltaic energy on the way. Joule 2020, 4, 1852–1855.

    Article  Google Scholar 

  22. Zhang, Z. H.; Li, X. M.; Yin, J.; Xu, Y.; Fei, W. W.; Xue, M. M.; Wang, Q.; Zhou, J. X.; Guo, W. L. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119.

    Article  CAS  Google Scholar 

  23. Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.

    Article  Google Scholar 

  24. Perez, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Geisler, M.; Reboud, J. L. A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications. Smart Mater. Struct. 2016, 25, 045015.

    Article  Google Scholar 

  25. Kwon, S. D. A T-shaped piezoelectric cantilever for fluid energy harvesting. Appl. Phys. Lett. 2010, 97, 164102.

    Article  Google Scholar 

  26. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  27. Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

    Article  CAS  Google Scholar 

  28. Bai, P.; Zhu, G.; Lin, Z. H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719.

    Article  CAS  Google Scholar 

  29. Kaltschmitt, M.; Streicher, W.; Wiese, A. Renewable Energy: Technology, Economics and Environment; Springer: Berlin, 2007.

    Google Scholar 

  30. Beeby, S. P.; Tudor, M. J.; White, N. M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175–R195.

    Article  CAS  Google Scholar 

  31. Cheng, G.; Lin, Z. H.; Lin, L.; Du, Z. L.; Wang, Z. L. Pulsed nanogenerator with huge instantaneous output power density. ACS Nano 2013, 7, 7383–7391.

    Article  CAS  Google Scholar 

  32. Cheng, G.; Zheng, H. W.; Yang, F.; Zhao, L.; Zheng, M. L.; Yang, J. J.; Qin, H. F.; Du, Z. L.; Wang, Z. L. Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip-electrode air-discharging and application for UV sensing. Nano Energy 2018, 44, 208–216.

    Article  CAS  Google Scholar 

  33. Qin, H.; Gu, G.; Shang, W.; Luo, H.; Zhang, W.; Cui, P.; Zhang, B.; Guo, J.; Cheng, G.; Du, Z. A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator. Nano Energy 2020, 68, 104372–104379.

    Article  CAS  Google Scholar 

  34. Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

    Article  CAS  Google Scholar 

  35. Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

    Article  Google Scholar 

  36. Liu, W.; Wang, Z.; Wang, G.; Liu, G.; Chen, J.; Pu, X.; Xi, Y.; Wang, X.; Guo, H.; Hu, C. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426–1434.

    Article  Google Scholar 

  37. Xu, L.; Bu, T. Z.; Yang, X. D.; Zhang, C.; Wang, Z. L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 2018, 49, 625–633.

    Article  CAS  Google Scholar 

  38. Li, X.; Sun, Y. An SSHI rectifier for triboelectric energy harvesting. IEEE Trans. Power Electron. 2020, 35, 3663–3678.

    Article  Google Scholar 

  39. Ghaffarinejad, A.; Lu, Y.; Hinchet, R.; Galayko, D.; Hasani, J. Y.; Kim, S. W.; Basset, P. Bennet’s doubler working as a power booster for triboelectric nano-generators. Electron. Lett. 2018, 54, 378–379.

    Article  CAS  Google Scholar 

  40. Pu, X.; Liu, M. M.; Li, L. X.; Zhang, C.; Pang, Y. K.; Jiang, C. Y.; Shao, L. H.; Hu, W. G.; Wang, Z. L. Efficient charging of Li-ion batteries with pulsed output current of triboelectric nanogenerators. Adv. Sci. 2016, 3, 1500255.

    Article  Google Scholar 

  41. Tang, W.; Zhou, T.; Zhang, C.; Fan, F. R.; Han, C. B.; Wang, Z. L. A power-transformed-and-managed triboelectric nanogenerator and its applications in a self-powered wireless sensing node. Nanotechnology 2014, 25, 225402.

    Article  Google Scholar 

  42. Xi, F. B.; Pang, Y. K.; Li, W.; Jiang, T.; Zhang, L. M.; Guo, T.; Liu, G. X.; Zhang, C.; Wang, Z. L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176.

    Article  CAS  Google Scholar 

  43. Li, Q. Y.; Hu, Y. W.; Yang, Q. X.; Li, X. C.; Zhang, X. M.; Yang, H. K.; Ji, P. Y.; Xi, Y.; Wang, Z. L. A robust constant-voltage DC triboelectric nanogenerator using the ternary dielectric triboelectrification effect. Adv. Energy Mater. 2023, 13, 2202921.

    Article  CAS  Google Scholar 

  44. Pathak, M.; Kumar, R. Synchronous inductor switched energy extraction circuits for triboelectric nanogenerator. IEEE Access 2021, 9, 76938–76954.

    Article  Google Scholar 

  45. Niu, S.; Wang, X.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975–8984.

    Article  CAS  Google Scholar 

  46. Yoo, D.; Lee, S.; Lee, J.-W.; Lee, K.; Go, E. Y.; Hwang, W.; Song, I.; Cho, S. B.; Kim, D. W.; Choi, D. et al. Reliable DC voltage generation based on the enhanced performance triboelectric nanogenerator fabricated by nanoimprinting-poling process and an optimized high efficiency integrated circuit. Nano Energy 2020, 69, 104388–104399.

    Article  CAS  Google Scholar 

  47. Liang, X.; Jiang, T.; Feng, Y. W.; Lu, P. J.; An, J.; Wang, Z. L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2002123.

    Article  CAS  Google Scholar 

  48. Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

    Article  Google Scholar 

  49. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

    Article  CAS  Google Scholar 

  50. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

    Article  CAS  Google Scholar 

  51. Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

    Article  CAS  Google Scholar 

  52. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  53. Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020, 68, 104272.

    Article  CAS  Google Scholar 

  54. Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

    Article  CAS  Google Scholar 

  55. Niu, S. M.; Zhou, Y. S.; Wang, S. H.; Liu, Y.; Lin, L.; Bando, Y.; Wang, Z. L. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy 2014, 8, 150–156.

    Article  CAS  Google Scholar 

  56. Niu, S. M.; Liu, Y.; Zhou, Y. S.; Wang, S. H.; Lin, L.; Wang, Z. L. Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage. IEEE Trans. Electron Devices 2015, 62, 641–647.

    Article  Google Scholar 

  57. Shao, J. J.; Jiang, T.; Wang, Z. L. Theoretical foundations of triboelectric nanogenerators (TENGs). Sci. China Technol. Sci. 2020, 63, 1087–1109.

    Article  Google Scholar 

  58. Su, Y.; Xie, G.; Tai, H.; Li, S.; Yang, B.; Wang, S.; Zhang, Q.; Du, H.; Zhang, H.; Du, X. et al. Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy 2018, 47, 316–324.

    Article  CAS  Google Scholar 

  59. Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.

    Article  CAS  Google Scholar 

  60. Qin, H. F.; Cheng, G.; Zi, Y. L.; Gu, G. Q.; Zhang, B.; Shang, W. Y.; Yang, F.; Yang, J. J.; Du, Z. L.; Wang, Z. L. High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater. 2018, 28, 1805216.

    Article  Google Scholar 

  61. Yang, J. J.; Yang, F.; Zhao, L.; Shang, W. Y.; Qin, H. F.; Wang, S. J.; Jiang, X. H.; Cheng, G.; Du, Z. L. Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch. Nano Energy 2018, 46, 220–228.

    Article  CAS  Google Scholar 

  62. Xia, K. Q.; Wu, D.; Fu, J. M.; Xu, Z. W. A pulse controllable voltage source based on triboelectric nanogenerator. Nano Energy 2020, 77, 105112.

    Article  CAS  Google Scholar 

  63. Wang, H. M.; Xu, L.; Bai, Y.; Wang, Z. L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 2020, 11, 4203.

    Article  Google Scholar 

  64. Hu, Y. W.; Li, Q. Y.; Long, L.; Yang, Q. X.; Fu, S. K.; Liu, W. L.; Zhang, X. M.; Yang, H. K.; Hu, C. G.; Xi, Y. Matching mechanism of charge excitation circuit for boosting performance of a rotary triboelectric nanogenerator. ACS Appl. Mater. Interfaces 2022, 14, 48636–48646.

    Article  CAS  Google Scholar 

  65. Guyomar, D.; Badel, A.; Lefeuvre, E.; Richard, C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 584–595.

    Article  Google Scholar 

  66. Peng, Y. M.; Choo, K. D.; Oh, S.; Lee, I.; Jang, T.; Kim, Y.; Lim, J.; Blaauw, D.; Sylvester, D. An efficient piezoelectric energy harvesting interface circuit using a sense-and-set rectifier. IEEE J. Solid State Circuits 2019, 54, 3348–3361.

    Article  Google Scholar 

  67. Ramadass, Y. K.; Chandrakasan, A. P. An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid State Circuits 2010, 45, 189–204.

    Article  Google Scholar 

  68. Khushboo; Azad, P. Design and analysis of a synchronized interface circuit for triboelectric energy harvesting. J. Electron. Mater. 2020, 49, 2491–2501.

    Article  CAS  Google Scholar 

  69. Kara, I.; Becermis, M.; Kamar, M. A. A.; Aktan, M.; Dogan, H.; Mutlu, S. A 70-to-2 V triboelectric energy harvesting system utilizing parallel-SSHI rectifier and DC-DC converters. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 210–223.

    Article  Google Scholar 

  70. Le, T. T.; Han, J. F.; Jouanne, A. V.; Mayaram, K.; Fiez, T. S. Piezoelectric micro-power generation interface circuits. IEEE J. Solid-State Circuits 2006, 41, 1411–1420.

    Article  Google Scholar 

  71. Dallago, E.; Frattini, G.; Miatton, D.; Ricotti, G.; Venchi, G. Integrable high-efficiency AC-DC converter for piezoelectric energy scavenging system. In Proceedings of the 2017 IEEE International Conference on Portable Information Devices, Orlando, FL, USA, 2007, pp 1–5.

  72. De Queiroz, A. C. M. Variations of the doubler of electricity. Phys. Educ. 2019, 54, 035019.

    Article  Google Scholar 

  73. Ghaffarinejad, A.; Hasani, J. Y.; Hinchet, R.; Lu, Y. X.; Zhang, H. M.; Karami, A.; Galayko, D.; Kim, S. W.; Basset, P. A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator. Nano Energy 2018, 51, 173–184.

    Article  CAS  Google Scholar 

  74. Wang, H.; Zhu, J. X.; He, T. Y. Y.; Zhang, Z. X.; Lee, C. K. Programmed-triboelectric nanogenerators—A multi-switch regulation methodology for energy manipulation. Nano Energy 2020, 78, 105241.

    Article  CAS  Google Scholar 

  75. Zhang, H. M.; Lu, Y. X.; Ghaffarinejad, A.; Basset, P. Progressive contact-separate triboelectric nanogenerator based on conductive polyurethane foam regulated with a Bennet doubler conditioning circuit. Nano Energy 2018, 51, 10–18.

    Article  Google Scholar 

  76. Wang, J. L.; Li, Y. K.; Xie, Z. J.; Xu, Y. H.; Zhou, J. W.; Cheng, T. H.; Zhao, H. W.; Wang, Z. L. Cylindrical direct-current triboelectric nanogenerator with constant output current. Adv. Energy Mater. 2020, 10, 1904227.

    Article  CAS  Google Scholar 

  77. Liu, D.; Yin, X.; Guo, H. Y.; Zhou, L. L.; Li, X. Y.; Zhang, C. L.; Wang, J.; Wang, Z. L. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 2019, 5, eaav6437.

    Article  CAS  Google Scholar 

  78. Zhao, Z. H.; Dai, Y. J.; Liu, D.; Zhou, L. L.; Li, S. X.; Wang, Z. L.; Wang, J. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nat. Commun. 2020, 11, 6186.

    Article  CAS  Google Scholar 

  79. Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

    Article  Google Scholar 

  80. Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.

    Article  CAS  Google Scholar 

  81. Zhai, N. N.; Wen, Z.; Chen, X. P.; Wei, A. M.; Sha, M.; Fu, J. J.; Liu, Y. N.; Zhong, J.; Sun, X. H. Blue energy collection toward all-hours self-powered chemical energy conversion. Adv. Engergy Mater. 2020, 10, 2001041.

    Article  CAS  Google Scholar 

  82. Wang, Z.; Liu, W.; He, W.; Guo, H.; Long, L.; Xi, Y.; Wang, X.; Liu, A.; Hu, C. Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management. Joule 2021, 5, 441–455.

    Article  Google Scholar 

  83. Zi, Y. L.; Guo, H. Y.; Wang, J.; Wen, Z.; Li, S. M.; Hu, C. G.; Wang, Z. L. An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy 2017, 31, 302–310.

    Article  CAS  Google Scholar 

  84. Liu, W. L.; Wang, Z.; Wang, G.; Zeng, Q. X.; He, W. C.; Liu, L. Y.; Wang, X.; Xi, Y.; Guo, H. Y.; Hu, C. G. et al. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat. Commun. 2020, 11, 1883.

    Article  CAS  Google Scholar 

  85. Park, I.; Maeng, J.; Shim, M.; Jeong, J.; Kim, C. A high-voltage dual-input buck converter achieving 52.9% maximum end-to-end efficiency for triboelectric energy-harvesting applications. IEEE J. Solid State Circuits 2020, 55, 1324–1336.

    Article  Google Scholar 

  86. Ottman, G. K.; Hofmann, H. F.; Lesieutre, G. A. Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 2003, 18, 696–703.

    Article  Google Scholar 

  87. Harmon, W.; Bamgboje, D.; Guo, H. Y.; Hu, T. S.; Wang, Z. L. Self-driven power management system for triboelectric nanogenerators. Nano Energy 2020, 71, 104642.

    Article  CAS  Google Scholar 

  88. Liang, X.; Jiang, T.; Liu, G. X.; Xiao, T. X.; Xu, L.; Li, W.; Xi, F. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater. 2019, 29, 1807241.

    Article  CAS  Google Scholar 

  89. Park, I.; Maeng, J.; Shim, M.; Jeong, J.; Kim, C. A bidirectional highvoltage dual-input buck converter for triboelectric energy-harvesting interface achieving 70.72% end-to-end efficiency. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019, pp C326–C327.

  90. Zhang, H. M.; Galayko, D.; Basset, P. A self-sustained energy storage system with an electrostatic automatic switch and a buck converter for triboelectric nanogenerators. J. Phys. Conf. Ser. 2019, 1407, 012016–012020.

    Article  Google Scholar 

  91. Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836–105844.

    Article  CAS  Google Scholar 

  92. Khan, M. B.; Kim, D. H.; Han, J. H.; Saif, H.; Lee, H.; Lee, Y.; Kim, M.; Jang, E.; Hong, S. K.; Joe, D. J. et al. Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit. Nano Energy 2019, 58, 211–219.

    Article  CAS  Google Scholar 

  93. Luo, L.; Bao, D.; Yu, W.; Zhang, Z.; Ren, T. A power manager system with 78% efficiency for high-voltage triboelectric nanogenerators. Sci. China Inf. Sci. 2017, 60, 029401:1–029401:3.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key R&D Project from Minister of Science and Technology (No. 2021YFA1201602) and the National Natural Science Foundation of China (Nos. 52172203 and U21A20175).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Wen or Yong Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Yang, Z., Zhi, J. et al. Enhancing the powering ability of triboelectric nanogenerator through output signal’s management strategies. Nano Res. 16, 11783–11800 (2023). https://doi.org/10.1007/s12274-023-5834-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5834-4

Keywords

Navigation