Skip to main content
Log in

Unraveling the interfacial effect of PdBi bimetallic catalysts on promoting CO2 electroreduction to formate

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Through interface engineering and content control strategy, a PdBi bimetallic interface structure was constructed for the first time to selectively convert CO2 to formate with a remarkably high Faraday efficiency (FEformate) of 94% and a partial current density (jformate) of 34 mA·cm2 at −0.8 V vs. reversible hydrogen electrode (RHE) in an H-cell. Moreover, the PdBi interface electrocatalyst even exhibited a high current density of 180 mA·cm2 with formate selectivity up to 92% in a flow cell and could steadily operate for at least 20 h. Electrochemical in-situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) confirmed that the PdBi interface could greatly weaken the adsorption of *CO intermediates due to electronic and geometric effects. Density functional theory (DFT) calculations also established that the PdBi interface regulated the CO2-to-formate pathway by reducing the energy barrier toward HCOOH and largely weakening the adsorption of *CO intermediates on the catalyst surface. This study reveals that the unique PdBi bimetallic interface can provide a novel platform to study the reaction mechanism through combining in-situ ATR-SEIRAS and DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hori, Y.; Murata, A.; Kikuchi, K.; Suzuki, S. Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate. J. Chem. Soc., Chem. Commun. 1987, 728–729.

    Google Scholar 

  2. Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 2002, 106, 15–17.

    CAS  Google Scholar 

  3. Wang, Y. O.; Godin, R.; Durrant, J. R.; Tang, J. W. Efficient hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions. Angew. Chem., Int. Ed. 2021, 60, 20811–20816.

    CAS  Google Scholar 

  4. Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

    CAS  Google Scholar 

  5. Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

    Google Scholar 

  6. Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

    CAS  Google Scholar 

  7. Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.

    Google Scholar 

  8. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy 2019, 4, 732–745.

    CAS  Google Scholar 

  9. Tao, Z. X.; Wu, Z. S.; Wu, Y. S.; Wang, H. L. Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions. ACS Catal. 2020, 10, 9271–9275.

    CAS  Google Scholar 

  10. Zhang, W. Y.; Qin, Q.; Dai, L.; Qin, R. X.; Zhao, X. J.; Chen, X. M.; Ou, D. H.; Chen, J.; Chuong, T. T.; Wu, B. H. et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd−O−Sn interfaces. Angew. Chem., Int. Ed. 2018, 57, 9475–9479.

    CAS  Google Scholar 

  11. Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

    CAS  Google Scholar 

  12. Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.

    CAS  Google Scholar 

  13. Jia, L.; Sun, M.; Xu, J.; Zhao, X.; Zhou, R.; Pan, B.; Wang, L.; Han, N.; Huang, B.; Li, Y. Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 21741–21745.

    CAS  Google Scholar 

  14. Jouny, M.; Luc, W.; Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 2018, 57, 2165–2177.

    CAS  Google Scholar 

  15. Lv, H.; Lv, F.; Qin, H. Y.; Min, X. W.; Sun, L. Z.; Han, N.; Xu, D. D.; Li, Y. G.; Liu, B. Single-crystalline mesoporous palladium and palladium-copper nanocubes for highly efficient electrochemical CO2 reduction. CCS Chem. 2022, 4, 1376–1385.

    CAS  Google Scholar 

  16. Zhou, R.; Fan, X.; Ke, X. X.; Xu, J.; Zhao, X.; Jia, L.; Pan, B. B.; Han, N.; Li, L. X.; Liu, X. J. et al. Two-dimensional palladium-copper alloy nanodendrites for highly stable and selective electrochemical formate production. Nano Lett. 2021, 21, 4092–4098.

    CAS  Google Scholar 

  17. Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem., Int. Ed. 2021, 60, 12554–12559.

    CAS  Google Scholar 

  18. An, X. W.; Li, S. S.; Hao, X. Q.; Xie, Z. K.; Du, X.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate. Renew. Sust. Energy Rev. 2021, 143, 110952.

    CAS  Google Scholar 

  19. Huang, W. C.; Zhu, J.; Wang, M. K.; Hu, L. P.; Tang, Y. F.; Shu, Y. Q.; Xie, Z. J.; Zhang, H. Emerging mono-elemental bismuth nanostructures: Controlled synthesis and their versatile applications. Adv. Funct. Mater. 2020, 31, 2007584.

    Google Scholar 

  20. Lu, X.; Wu, Y. S.; Yuan, X. L.; Wang, H. L. An integrated CO2 electrolyzer and formate fuel cell enabled by a reversibly restructuring Pb−Pd bimetallic catalyst. Angew. Chem., Int. Ed. 2019, 58, 4031–4035.

    CAS  Google Scholar 

  21. Pan, B. B.; Yuan, G. T.; Zhao, X.; Han, N.; Huang, Y.; Feng, K.; Cheng, C.; Zhong, J.; Zhang, L.; Wang, Y. H. et al. Highly dispersed indium oxide nanoparticles supported on carbon nanorods enabling efficient electrochemical CO2 reduction. Small Sci. 2021, 1, 2100029.

    CAS  Google Scholar 

  22. Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570.

    CAS  Google Scholar 

  23. Zhong, H. X.; Qiu, Y. L.; Li, X. F.; Pan, L. W.; Zhang, H. M. Ordered cone-structured tin directly grown on carbon paper as efficient electrocatalyst for CO2 electrochemical reduction to formate. J. Energy Chem. 2021, 55, 236–243.

    CAS  Google Scholar 

  24. Jiang, T. W.; Qin, X. X.; Ye, K.; Zhang, W. Y.; Li, H.; Liu, W. H.; Huo, S. J.; Zhang, X. G.; Jiang, K.; Cai, W. B. An interactive study of catalyst and mechanism for electrochemical CO2 reduction to formate on Pd surfaces. Appl. Catal. B: Environ. 2023, 334, 122815.

    CAS  Google Scholar 

  25. Zhang, G. R.; Qin, X. X.; Deng, C. W.; Cai, W. B.; Jiang, K. Electrocatalytic CO2 and HCOOH interconversion on Pd-based catalysts. Adv. Sens. Energy Mater. 2022, 1, 100007.

    Google Scholar 

  26. Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.

    Google Scholar 

  27. Li, W. J.; Zhang, Z. R.; Liu, W. H.; Gan, Q.; Liu, M. M.; Huo, S. J.; Chen, W. ZnSn nanocatalyst: Ultra-high formate selectivity from CO2 electrochemical reduction and the structure evolution effect. J. Colloid Interface Sci. 2022, 608, 2791–2800.

    CAS  Google Scholar 

  28. Zhao, C. C.; Wang, J. L. Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chem. Eng. J. 2016, 293, 161–170.

    CAS  Google Scholar 

  29. Zhou, Y.; Zhou, R.; Zhu, X. R.; Han, N.; Song, B.; Liu, T. C.; Hu, G. Z.; Li, Y. F.; Lu, J.; Li, Y. G. Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate. Adv. Mater. 2020, 32, 2000992.

    CAS  Google Scholar 

  30. Jiang, B.; Zhang, X. G.; Jiang, K.; Wu, D. Y.; Cai, W. B. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 2018, 140, 2880–2889.

    CAS  Google Scholar 

  31. Xie, L. F.; Liu, X.; Huang, F. Y.; Liang, J. S.; Liu, J. Y.; Wang, T. Y.; Yang, L. M.; Cao, R. G.; Li, Q. Regulating Pd-catalysis for electrocatalytic CO2 reduction to formate via intermetallic PdBi nanosheets. Chin. J. Catal. 2022, 43, 1680–1686.

    CAS  Google Scholar 

  32. Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

    CAS  Google Scholar 

  33. Bai, X. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Song, Y. F.; Ge, R. P.; Wei, W.; Sun, Y. H. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd−Sn alloy. Angew. Chem., Int. Ed. 2017, 56, 12219–12223.

    CAS  Google Scholar 

  34. Bok, J.; Lee, S. Y.; Lee, B. H.; Kim, C.; Nguyen, D. L. T.; Kim, J. W.; Jung, E.; Lee, C. W.; Jung, Y.; Lee, H. S. et al. Designing atomically dispersed Au on tensile-strained Pd for efficient CO2 electroreduction to formate. J. Am. Chem. Soc. 2021, 143, 5386–5395.

    CAS  Google Scholar 

  35. Li, J. H.; Liu, M. Y.; Li, Y.; Yuan, L.; Zhang, P.; Cai, Z.; Chen, H.; Zou, J. L. ZIF-8@ZIF-67-derived ZnCo2O4@nitrogen-doped carbon/carbon nanotubes wrapped by a carbon layer: A stable oxygen reduction catalyst with a competitive strength in acid media. Mater. Today Energy 2021, 19, 100574.

    CAS  Google Scholar 

  36. Gunji, T.; Ochiai, H.; Ohira, T.; Liu, Y. B.; Nakajima, Y.; Matsumoto, F. Preparation of various Pd-based alloys for electrocatalytic CO2 reduction reaction-selectivity depending on secondary elements. Chem. Mater. 2020, 32, 6855–6863.

    CAS  Google Scholar 

  37. Wang, Y. X.; Cao, L.; Libretto, N. J.; Li, X.; Li, C. Y.; Wan, Y. D.; He, C.; Lee, J.; Gregg, J.; Zong, H. et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16635–16642.

    CAS  Google Scholar 

  38. Xie, H.; Wan, Y. Y.; Wang, X. M.; Liang, J. S.; Lu, G.; Wang, T. Y.; Chai, G. L.; Adli, N. M.; Priest, C.; Huang, Y. H. et al. Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi−Pd single atom alloy nanodendrites. Appl. Catal. B: Environ. 2021, 289, 119783.

    CAS  Google Scholar 

  39. Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: Elucidating the active Pd atoms in alloy nanoparticles. J. Am. Chem. Soc. 2018, 140, 8902–8909.

    CAS  Google Scholar 

  40. Lu, L.; Sun, X. F.; Ma, J.; Yang, D. X.; Wu, H. H.; Zhang, B. X.; Zhang, J. L.; Han, B. X. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem., Int. Ed. 2018, 57, 14149–14153.

    CAS  Google Scholar 

  41. Wang, P. T.; Qiao, M.; Shao, Q.; Pi, Y. C.; Zhu, X.; Li, Y. F.; Huang, X. Q. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933.

    Google Scholar 

  42. Wang, Y. F.; Han, P.; Lv, X. M.; Zhang, L. J.; Zheng, G. F. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551–2582.

    CAS  Google Scholar 

  43. Shen, X. Y.; Liu, X. K.; Wang, S. C.; Chen, T.; Zhang, W.; Cao, L. L.; Ding, T.; Lin, Y.; Liu, D.; Wang, L. et al. Synergistic modulation at atomically dispersed Fe/Au interface for selective CO2 electroreduction. Nano Lett. 2021, 21, 686–692.

    CAS  Google Scholar 

  44. Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F. et al. Enhancing CO2 electroreduction with the metal-oxide interface. J. Am. Chem. Soc. 2017, 139, 5652–5655.

    CAS  Google Scholar 

  45. Li, Z.; Feng, Y. J.; Li, Y. F.; Chen, X. P.; Li, N.; He, W. H.; Liu, J. Fabrication of Bi/Sn bimetallic electrode for high-performance electrochemical reduction of carbon dioxide to formate. Chem. Eng. J. 2022, 428, 130901.

    CAS  Google Scholar 

  46. Li, H.; Jiang, T. W.; Qin, X. X.; Chen, J.; Ma, X. Y.; Jiang, K.; Zhang, X. G.; Cai, W. B. Selective reduction of CO2 to CO on an Sb-modified Cu electrode: Spontaneous fabrication and physical insight. ACS Catal. 2021, 11, 6846–6856.

    CAS  Google Scholar 

  47. Jiang, T. W.; Zhou, Y. W.; Ma, X. Y.; Qin, X. X.; Li, H.; Ding, C.; Jiang, B.; Jiang, K.; Cai, W. B. Spectrometric study of electrochemical CO2 reduction on Pd and Pd-B electrodes. ACS Catal. 2021, 11, 840–848.

    CAS  Google Scholar 

  48. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  49. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  50. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  51. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  52. Johnson, R. Computational chemistry comparison and benchmark database [Online]. NIST: Gaithersburg, MD, 2018; T47C7Z. http://cccbdb.nist.gov (accessed Apr. 20, 2023).

  53. Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

    CAS  Google Scholar 

  54. Sun, L. B.; Reddu, V.; Fisher, A. C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403.

    CAS  Google Scholar 

  55. Fu, Y. Y.; Wang, T. T.; Zheng, W. Z.; Lei, C. J.; Yang, B.; Chen, J.; Li, Z. J.; Lei, L. C.; Yuan, C.; Hou, Y. Nanoconfined tin oxide within N-doped nanocarbon supported on electrochemically exfoliated graphene for efficient electroreduction of CO2 to formate and C1 products. ACS Appl. Mater. Interfaces 2020, 12, 16178–16185.

    CAS  Google Scholar 

  56. Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

    CAS  Google Scholar 

  57. Ma, M.; Trześniewski, B. J.; Xie, J.; Smith, W. A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9748–9752.

    CAS  Google Scholar 

  58. Xu, X. L.; Zhang, X. M.; Xia, Z. X.; Sun, R. L.; Wang, J. H.; Jiang, Q. K.; Yu, S. S.; Wang, S. L.; Sun, G. Q. Fe−N−C with intensified exposure of active sites for highly efficient and stable direct methanol fuel cells. ACS Appl. Mater. Interfaces 2021, 13, 16279–16288.

    CAS  Google Scholar 

  59. Herron, J. A.; Tonelli, S.; Mavrikakis, M. Atomic and molecular adsorption on Pd (111). Surf. Sci. 2012, 606, 1670–1679.

    CAS  Google Scholar 

  60. Zhu, S. Q.; Wang, Q.; Qin, X. P.; Gu, M.; Tao, R.; Lee, B. P.; Zhang, L. L.; Yao, Y. Z.; Li, T. H.; Shao, M. H. Tuning structural and compositional effects in Pd-Au nanowires for highly selective and active CO2 electrochemical reduction reaction. Adv. Energy Mater. 2018, 8, 1802238.

    Google Scholar 

  61. Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22003074 and 22002087), Youth Innovation Promotion Association CAS, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials (No. 2021MCIMKF03), and Baoshan Iron & Steel Co., Ltd. (Baosteel), located in Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minmin Liu, Xiao Wang or Shengjuan Huo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ding, L., Liu, M. et al. Unraveling the interfacial effect of PdBi bimetallic catalysts on promoting CO2 electroreduction to formate. Nano Res. 16, 10822–10831 (2023). https://doi.org/10.1007/s12274-023-5829-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5829-1

Keywords

Navigation