Skip to main content
Log in

In-situ electrochemical restructuring of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces enabling stabilization intermediates for high-performance CO2 electroreduction to formate

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bismuth-based materials are prevalent catalysts for CO2 electroreduction to formate, enduring high hydrogen evolution reactions and inadequate activity and stability. Herein, we reveal that in-situ electrochemical transformation of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces, which can stabilize the intermediates and achieve highly selective and consistent CO2 electroreduction. It shows over 85% Faraday efficiency (FE) of formate with a potential window of −0.8 to −1.2 VRHE (RHE: reversible hydrogen electrode) and a stability above 90% over 27 h in H-type cell at −0.9 VRHE. It maintains more than 85% of FEformate at the current density of −25 to −200 mA·cm−2, and has stability of about 80% of FEformate at least 10 h at −150 mA·cm−2 in flow cell. In-situ Fourier transform infrared (FT-IR) spectroscopy measurement confirms that the preferred route of catalytic reaction is to generate *CO2 and *OCHO intermediates. The density functional theory (DFT) calculations illustrate that heterointerfaces facilitate the prior process of CO2 to HCOOH through *OCHO by additional Bi hybrid orbitals. This study is expected to open up a new idea for the design of CO2 electroreduction catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Honegger, M.; Michaelowa, A.; Roy, J. Potential implications of carbon dioxide removal for the sustainable development goals. Climate Policy 2021, 21, 678–698.

    Google Scholar 

  2. Jiang, J. J.; Ye, B.; Liu, J. G. Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research. Renew. Sust. Energ. Rev. 2019, 112, 813–833.

    Google Scholar 

  3. Koh, L. P.; Zeng, Y. W.; Sarira, T. V.; Siman, K. Carbon prospecting in tropical forests for climate change mitigation. Nat. Commun. 2021, 12, 1271.

    CAS  Google Scholar 

  4. Zeyringer, M.; Price, J.; Fais, B.; Li, P. H.; Sharp, E. Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nat. Energy 2018, 3, 395–403.

    CAS  Google Scholar 

  5. Liu, X.; Li, S. S.; Liu, Y. M.; Cao, Y. Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis. Chin. J. Catal. 2015, 36, 1461–1475.

    CAS  Google Scholar 

  6. Pérez-Fortes, M.; Schöneberger, J. C.; Boulamanti, A.; Harrison, G.; Tzimas, E. Formic acid synthesis using CO2 as raw material: Technoeconomic and environmental evaluation and market potential. Int. J. Hydrogen Energy 2016, 41, 16444–16462.

    Google Scholar 

  7. Zhang, J. W.; Zeng, G. M.; Chen, L. L.; Lai, W. C.; Yuan, Y. L.; Lu, Y. F.; Ma, C.; Zhang, W. H.; Huang, H. W. Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites. Nano Res. 2022, 15, 4014–4022.

    CAS  Google Scholar 

  8. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  9. Zhang, X. L.; Zhang, Y.; Li, F. W.; Easton, C. D.; Bond, A. M.; Zhang, J. Ultra-small Cu nanoparticles embedded in N-doped carbon arrays for electrocatalytic CO2 reduction reaction in dimethylformamide. Nano Res. 2018, 11, 3678–3690.

    CAS  Google Scholar 

  10. Xiao, T. S.; Tang, C.; Li, H. B.; Ye, T.; Ba, K.; Gong, P.; Sun, Z. Z. CO2 reduction with coin catalyst. Nano Res. 2022, 15, 3859–3865.

    CAS  Google Scholar 

  11. Meng, L. Z.; Zhang, E. H.; Peng, H. Y.; Wang, Y.; Wang, D. S.; Rong, H. P.; Zhang, J. T. Bi/Zn dual single-atom catalysts for electroreduction of CO2 to syngas. ChemCatChem 2022, 14, e202101801.

    CAS  Google Scholar 

  12. Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

    CAS  Google Scholar 

  13. Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

    CAS  Google Scholar 

  14. Zhang, W. J.; Yang, S. Y.; Jiang, M. H.; Hu, Y.; Hu, C. Q.; Zhang, X. L.; Jin, Z. Nanocapillarity and nanoconfinement effects of pipet-like bismuth@carbon nanotubes for highly efficient electrocatalytic CO2 reduction. Nano Lett. 2021, 21, 2650–2657.

    Google Scholar 

  15. Wu, D.; Huo, G.; Chen, W. Y.; Fu, X. Z.; Luo, J. L. Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets. Appl. Catal. B:Environ. 2020, 271, 118957.

    CAS  Google Scholar 

  16. Li, F.; Gu, G. H.; Choi, C.; Kolla, P.; Hong, S.; Wu, T. S.; Soo, Y. L.; Masa, J.; Mukerjee, S.; Jung, Y. et al. Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Appl. Catal. B:Environ. 2020, 277, 119241.

    CAS  Google Scholar 

  17. Kim, S.; Dong, W. J.; Gim, S.; Sohn, W.; Park, J. Y.; Yoo, C. J.; Jang, H. W.; Lee, J. L. Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate. Nano Energy 2017, 39, 44–52.

    CAS  Google Scholar 

  18. Liu, S. Y.; Hu, B. T.; Zhao, J. K.; Jiang, W. J.; Feng, D. Q.; Zhang, C.; Yao, W. Enhanced electrocatalytic CO2 reduction of bismuth nanosheets with introducing surface bismuth subcarbonate. Coatings 2022, 12, 233.

    CAS  Google Scholar 

  19. Zhang, Y.; Li, F. W.; Zhang, X. L.; Williams, T.; Easton, C. D.; Bond, A. M.; Zhang, J. Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. J. Mater. Chem. A 2018, 6, 4714–4720.

    CAS  Google Scholar 

  20. Duan, Y. X.; Zhou, Y. T.; Yu, Z.; Liu, D. X.; Wen, Z.; Yan, J. M.; Jiang, Q. Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew. Chem., Int. Ed. 2021, 60, 8798–8802.

    CAS  Google Scholar 

  21. Zhou, J. H.; Yuan, K.; Zhou, L.; Guo, Y.; Luo, M. Y.; Guo, X. Y.; Meng, Q. Y.; Zhang, Y. W. Boosting electrochemical reduction of CO2 at a low overpotential by amorphous Ag-Bi-S-O decorated Bi0 nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 14197–14201.

    CAS  Google Scholar 

  22. Yu, J. G.; Zhang, J.; Liu, S. W. Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres. J. Phys. Chem. C 2010, 114, 13642–13649.

    CAS  Google Scholar 

  23. Tian, L.; Tan, H. Y.; Vittal, J. J. Morphology-controlled synthesis of Bi2S3 nanomaterials via single- and multiple-source approaches. Cryst. Growth Des. 2008, 8, 734–738.

    Google Scholar 

  24. Lv, J. J.; Yin, R. N.; Zhou, L. M.; Li, J.; Kikas, R.; Xu, T.; Wang, Z. J.; Jin, H. L.; Wang, X.; Wang, S. Microenvironment engineering for the electrocatalytic CO2 reduction reaction. Angew. Chem., Int. Ed. 2022, 134, e202207252.

    Google Scholar 

  25. Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A. X.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918.

    CAS  Google Scholar 

  26. Endrődi, B.; Samu, A.; Kecsenovity, E.; Halmágyi, T.; Sebők, D.; Janáky, C. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 2021, 6, 439–448.

    Google Scholar 

  27. Chen, C.; Khosrowabadi Kotyk, J. F.; Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 2018, 4, 2571–2586.

    CAS  Google Scholar 

  28. Wang, W. B.; Wang, Z. T.; Yang, R. O.; Duan, J. Y.; Liu, Y. W.; Nie, A. M.; Li, H. Q.; Xia, B. Y.; Zhai, T. Y. In situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew. Chem., Int. Ed. 2021, 60, 22940–22947.

    CAS  Google Scholar 

  29. Baruch, M. F.; Pander III, J. E.; White, J. L.; Bocarsly, A. B. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 2015, 5, 3148–3156.

    CAS  Google Scholar 

  30. Chen, S.; Chen, A. C. Electrochemical reduction of carbon dioxide on Au nanoparticles: An in situ FTIR study. J. Phys. Chem. C 2019, 123, 23898–23906.

    CAS  Google Scholar 

  31. Dutta, A.; Kuzume, A.; Rahaman, M.; Vesztergom, S.; Broekmann, P. Monitoring the chemical state of catalysts for CO2 electroreduction: An in operando study. ACS Catal. 2015, 5, 7498–7502.

    CAS  Google Scholar 

  32. Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017, 7, 4822–4827.

    CAS  Google Scholar 

  33. Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

    CAS  Google Scholar 

  34. Katayama, Y.; Nattino, F.; Giordano, L.; Hwang, J.; Rao, R. R.; Andreussi, O.; Marzari, N.; Shao-Horn, Y. An in situ surface-enhanced infrared absorption spectroscopy study of electrochemical CO2 reduction: Selectivity dependence on surface C-bound and O-bound reaction intermediates. J. Phys. Chem. C 2019, 123, 5951–5963.

    CAS  Google Scholar 

  35. Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C−C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

    CAS  Google Scholar 

  36. Mendieta-Reyes, N. E.; Cheuquepán, W.; Rodes, A.; Gómez, R. Spectroelectrochemical study of CO2 reduction on TiO2 electrodes in acetonitrile. ACS Catal. 2020, 10, 103–113.

    CAS  Google Scholar 

  37. Cheng, H.; Liu, S.; Zhang, J. D.; Zhou, T. P.; Zhang, N.; Zheng, X. S.; Chu, W. S.; Hu, Z. P.; Wu, C. Z.; Xie, Y. Surface nitrogen-injection engineering for high formation rate of CO2 reduction to formate. Nano Lett. 2020, 20, 6097–6103.

    CAS  Google Scholar 

  38. Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

    Google Scholar 

  39. Yang, F.; Ma, X. Y.; Cai, W. B.; Song, P.; Xu, W. L. Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 20451–20459.

    CAS  Google Scholar 

  40. Guo, Y. B.; Chen, Q.; Nie, A. M.; Yang, H.; Wang, W. B.; Su, J. W.; Wang, S. Z.; Liu, Y. W.; Wang, S.; Li, H. Q. et al. 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano 2020, 14, 1635–1644.

    CAS  Google Scholar 

  41. Wang J. J., Wang G. J., Zhang J. F., Wang Y. D., Wu H., Zheng X. R., Ding J., Han X. P., Deng Y. D., Hu W. B. Inversely tuning the CO2 electroreduction and hydrogen evolution activity on metal oxide via heteroatom doping. Angew. Chem. Int. Ed. 2021, 60, 7602–7606.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21871005 and 22171005) and the University Synergy Innovation Program of Anhui Province (Nos. GXXT-2020-005, GXXT-2021-012, and GXXT-2021-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyou Geng.

Electronic Supplementary Material

12274_2022_5337_MOESM1_ESM.pdf

In-situ electrochemical restructuring of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces enabling stabilization intermediates for high-performance CO2 electroreduction to formate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, Q., Chen, F. et al. In-situ electrochemical restructuring of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces enabling stabilization intermediates for high-performance CO2 electroreduction to formate. Nano Res. 16, 7974–7981 (2023). https://doi.org/10.1007/s12274-022-5337-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5337-8

Keywords

Navigation