Skip to main content
Log in

Recent advances of implantable systems and devices in cancer therapy and sensing

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Malignant tumors have the capability to metastasize and colonize, meaning that they can spread to other organs and tissues, distributing metastatic focus and are hard to target. Although significant advances have been made in cancer treatment, it remains one of the leading causes of death around the globe. In recent years, new-emerging implantable systems and devices have been developed to tackle the challenge of metastatic tumors. In this review, implantable systems for suppressing tumors and preventing tumor recurrence are reported. In particular, we emphasize the responsive drug delivery systems and the external field assisted catalytic therapy for tumor treatment, as well as implantable biosensors for tumor microenvironment monitoring. We also conclude the open challenges and future perspectives of implantable systems and devices for cancer therapy and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coussens, L. M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867.

    Article  CAS  Google Scholar 

  2. Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 2016, 16, 201–218.

    Article  CAS  Google Scholar 

  3. Zhang, W.; Wang, F.; Hu, C.; Zhou, Y.; Gao, H. L.; Hu, J. The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharm. Sin. B 2020, 10, 2037–2053.

    Google Scholar 

  4. Yang, F. J.; Zhao, Z. Q.; Sun, B. J.; Chen, Q.; Sun, J.; He, Z. G.; Luo, C. Nanotherapeutics for antimetastatic treatment. Trends Cancer 2020, 6, 645–659.

    Article  CAS  Google Scholar 

  5. Yang, Y. K.; Qiao, X. Y.; Huang, R. Y.; Chen, H. X.; Shi, X. L.; Wang, J.; Tan, W. H.; Tan, Z. K. E-jet 3D printed drug delivery implants to inhibit growth and metastasis of orthotopic breast cancer. Biomaterials 2020, 230, 119618.

    Article  CAS  Google Scholar 

  6. Li, X. Y.; Duan, D. Y.; Yang, J. M.; Wang, P. P.; Han, B.; Zhao, L.; Jepsen, S.; Dommisch, H.; Winter, J.; Xu, Y. The expression of human ß-defensins (hBD-1, hBD-2, hBD-3, hBD-4) in gingival epithelia. Arch. Oral Biol. 2016, 66, 15–21.

    Article  CAS  Google Scholar 

  7. Alieva, M.; Van Rheenen, J.; Broekman, M. L. D. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin. Exp. Metastasis 2018, 35, 319–331.

    Article  CAS  Google Scholar 

  8. Belluomo, R.; Khodaei, A.; Amin Yavari, S. Additively manufactured bi-functionalized bioceramics for reconstruction of bone tumor defects. Acta Biomater. 2023, 156, 234–249.

    Article  CAS  Google Scholar 

  9. Liu, W.; Wang, Y. F.; Wang, J. Q.; Lanier, O. L.; Wechsler, M. E.; Peppas, N. A.; Gu, Z. Macroencapsulation devices for cell therapy. Engineering 2022, 13, 53–70.

    Article  CAS  Google Scholar 

  10. Cai, S. M.; Jin, Z.; Zeng, P.; Yang, L. X.; Yan, Y. Q.; Wang, Z. M.; Shen, Y. Y.; Guo, S. R. Structural optimization and in vivo evaluation of a colorectal stent with anti-migration and anti-tumor properties. Acta Biomater. 2022, 154, 123–134.

    Article  CAS  Google Scholar 

  11. Cai, M.; Li, X. J.; Xu, M.; Zhou, S. Q.; Fan, L.; Huang, J. Y.; Xiao, C. R.; Lee, Y.; Yang, B.; Wang, L. et al. Injectable tumor microenvironment-modulated hydrogels with enhanced chemosensitivity and osteogenesis for tumor-associated bone defects closed-loop management. Chem. Eng. J. 2022, 450, 138086.

    Article  CAS  Google Scholar 

  12. Wang, X.; Zhai, D.; Yao, X. G.; Wang, Y. F.; Ma, H. S.; Yu, X. P.; Du, L.; Lin, H. X.; Wu, C. T. 3D printing of pink bioceramic scaffolds for bone tumor tissue therapy. Appl. Mater. Today 2022, 27, 101443.

    Article  Google Scholar 

  13. Zhang, L. C.; Guan, X. L.; Xiao, X. F.; Chen, Z. G.; Zhou, G.; Fan, Y. B. Dual-phase injectable thermosensitive hydrogel incorporating Fe3O4@PDA with pH and NIR triggered drug release for synergistic tumor therapy. Eur. Polym. J. 2022, 176, 111424.

    Article  CAS  Google Scholar 

  14. Wan, X. Y.; Zhao, Y. C.; Li, Z.; Li, L. L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2022, 2, 20210029.

    Article  Google Scholar 

  15. Talebian, S.; Foroughi, J.; Wade, S. J.; Vine, K. L.; Dolatshahi-Pirouz, A.; Mehrali, M.; Conde, J.; Wallace, G. G. Biopolymers for antitumor implantable drug delivery systems: Recent advances and future outlook. Adv. Mater. 2018, 30, 1706665.

    Article  Google Scholar 

  16. Santos, A.; Aw, M. S.; Bariana, M.; Kumeria, T.; Wang, Y.; Losic, D. Drug-releasing implants: Current progress, challenges, and perspectives. J. Mater. Chem. B 2014, 2, 6157–6182.

    Article  CAS  Google Scholar 

  17. Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Dis. Today 2002, 7, 569–579.

    Article  CAS  Google Scholar 

  18. Zheng, H.; Wang, S. Q.; Zhou, L.; He, X. J.; Cheng, Z. J.; Cheng, F.; Liu, Z.; Wang, X. Y.; Chen, Y. H.; Zhang, Q. Y. Injectable multi-responsive micelle/nanocomposite hybrid hydrogel for bioenzyme and photothermal augmented chemodynamic therapy of skin cancer and bacterial infection. Chem. Eng. J. 2021, 404, 126439.

    Article  CAS  Google Scholar 

  19. Kuppusamy, P.; Li, H. Q.; Ilangovan, G.; Cardounel, A. J.; Zweier, J. L.; Yamada, K.; Krishna, M. C.; Mitchell, J. B. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 2002, 62, 307–312.

    CAS  Google Scholar 

  20. Russo, A.; DeGraff, W.; Friedman, N.; Mitchell, J. B. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res. 1986, 46, 2845–2848.

    CAS  Google Scholar 

  21. Zhang, Y.; Dosta, P.; Conde, J.; Oliva, N.; Wang, M.; Artzi, N. Prolonged local in vivo delivery of stimuli-responsive nanogels that rapidly release doxorubicin in triple-negative breast cancer cells. Adv. Healthcare Mater. 2020, 9, e1901101.

    Article  Google Scholar 

  22. Zhao, Z. R.; Shen, J. W.; Zhang, L.; Wang, L. S.; Xu, H. Y.; Han, Y. H.; Jia, J.; Lu, Y.; Yu, R. T.; Liu, H. M. Injectable postoperative enzyme-responsive hydrogels for reversing temozolomide resistance and reducing local recurrence after glioma operation. Biomater. Sci. 2020, 8, 5306–5316.

    Article  CAS  Google Scholar 

  23. Sharma, R.; Singh, D.; Gaur, P.; Joshi, D. Intelligent automated drug administration and therapy: Future of healthcare. Drug Deliv. Transl. Res. 2021, 11, 1878–1902.

    Article  Google Scholar 

  24. Linsley, C. S.; Wu, B. M. Recent advances in light-responsive on-demand drug-delivery systems. Ther. Delivery 2017, 8, 89–107.

    Article  CAS  Google Scholar 

  25. Wang, H. S.; Zhang, W. B.; Gao, C. Y. Shape transformation of light-responsive pyrene-containing micelles and their influence on cytoviability. Biomacromolecules 2015, 16, 2276–2281.

    Article  CAS  Google Scholar 

  26. Zhao, H.; Sterner, E. S.; Coughlin, E. B.; Theato, P. o-Nitrobenzyl alcohol derivatives: Opportunities in polymer and materials science. Macromolecules 2012, 45, 1723–1736.

    Article  CAS  Google Scholar 

  27. Zhang, Z. W.; Wang, W. H.; O’Hagan, M.; Dai, J. H.; Zhang, J. J.; Tian, H. Stepping out of the blue: From visible to near-IR triggered photoswitches. Angew. Chem., Int. Ed. 2022, 61, e202205758.

    Article  CAS  Google Scholar 

  28. Choudhari, M.; Xu, J. J.; McKay, A. I.; Guerrin, C.; Forsyth, C.; Ma, H. Z.; Goerigk, L.; O’Hair, R. A. J.; Bonnefont, A.; Ruhlmann, L. et al. A photo-switchable molecular capsule: Sequential photoinduced processes. Chem. Sci. 2022, 13, 13732–13740.

    Article  CAS  Google Scholar 

  29. Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.

    Article  CAS  Google Scholar 

  30. Wang, Z. T.; Wang, M. L.; Wang, X. X.; Hao, Z. K.; Han, S. B.; Wang, T.; Zhang, H. Y. Photothermal-based nanomaterials and photothermal-sensing: An overview. Biosens. Bioelectron. 2023, 220, 114883.

    Article  CAS  Google Scholar 

  31. Murdan, S. Electro-responsive drug delivery from hydrogels. J. Controlled Release 2003, 92, 1–17.

    Article  CAS  Google Scholar 

  32. Singhal, M.; Kalia, Y. N. Iontophoresis and electroporation. In Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds; Sugibayashi, K., Ed.; Springer: Tokyo, 2017; pp 165–182.

    Chapter  Google Scholar 

  33. Prausnitz, M. R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268.

    Article  CAS  Google Scholar 

  34. Subramony, J. A.; Sharma, A.; Phipps, J. B. Microprocessor controlled transdermal drug delivery. Int. J. Pharm. 2006, 317, 1–6.

    Article  CAS  Google Scholar 

  35. Adhikary, P.; Mahmud, M. A. P.; Solaiman, T.; Wang, Z. L. Recent advances on biomechanical motion-driven triboelectric nanogenerators for drug delivery. Nano Today 2022, 45, 101513.

    Article  CAS  Google Scholar 

  36. Liu, Z. R.; Liang, X.; Liu, H. H.; Wang, Z.; Jiang, T.; Cheng, Y. Y.; Wu, M. Q.; Xiang, D. L.; Li, Z.; Wang, Z. L. et al. High-throughput and self-powered electroporation system for drug delivery assisted by microfoam electrode. ACS Nano 2020, 14, 15458–15467.

    Article  CAS  Google Scholar 

  37. Liu, Z. R.; Nie, J. H.; Miao, B.; Li, J. D.; Cui, Y. B.; Wang, S.; Zhang, X. D.; Zhao, G. R.; Deng, Y. B.; Wu, Y. H. et al. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv. Mater. 2019, 31, 1807795.

    Article  Google Scholar 

  38. Zhao, C. C.; Feng, H. Q.; Zhang, L. J.; Li, Z.; Zou, Y.; Tan, P. C.; Ouyang, H.; Jiang, D. J.; Yu, M.; Wang, C. et al. Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Adv. Funct. Mater. 2019, 29, 1808640.

    Article  CAS  Google Scholar 

  39. Hayashi, K.; Sakamoto, W.; Yogo, T. Smart ferrofluid with quick gel transformation in tumors for MRI-guided local magnetic thermochemotherapy. Adv. Funct. Mater. 2016, 26, 1708–1718.

    Article  CAS  Google Scholar 

  40. Sasikala, A. R. K.; Unnithan, A. R.; Yun, Y. H.; Park, C. H.; Kim, C. S. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Acta Biomater. 2016, 31, 122–133.

    Article  CAS  Google Scholar 

  41. Panikkanvalappil, S. R.; Bhagavatula, S. K.; Deans, K.; Jonas, O.; Rashidian, M.; Mishra, S. Enhanced tumor accumulation of multimodal magneto-plasmonic nanoparticles via an implanted micromagnet-assisted delivery strategy. Adv. Healthcare Mater. 2023, 12, 2201585.

    Article  CAS  Google Scholar 

  42. Erkoc, P.; Yasa, I. C.; Ceylan, H.; Yasa, O.; Alapan, Y.; Sitti, M. Mobile microrobots for active therapeutic delivery. Adv. Ther. 2019, 2, 1800064.

    Article  Google Scholar 

  43. Jain, A.; Tiwari, A.; Verma, A.; Jain, S. K. Ultrasound-based triggered drug delivery to tumors. Drug Deliv. Transl. Res. 2018, 8, 150–164.

    Article  CAS  Google Scholar 

  44. Sealy, C. Scaffold material sheds light on bone tumor therapy. Mater. Today 2018, 21, 465–466.

    Google Scholar 

  45. Cojocaru, F. D.; Balan, V.; Popa, I. M.; Munteanu, A.; Anghelache, A.; Verestiuc, L. Magnetic composite scaffolds for potential applications in radiochemotherapy of malignant bone tumors. Medicina 2019, 55, 153.

    Article  Google Scholar 

  46. Liu, Y. Q.; Li, T.; Ma, H. S.; Zhai, D.; Deng, C. J.; Wang, J. W.; Zhuo, S. J.; Chang, J.; Wu, C. T. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Acta Biomater. 2018, 73, 531–546.

    Article  CAS  Google Scholar 

  47. Miao, H.; Shen, R. Q.; Zhang, W. H.; Lin, Z. F.; Wang, H.; Yang, L. K.; Liu, X. Y.; Lin, N. B. Near-infrared light triggered silk fibroin scaffold for photothermal therapy and tissue repair of bone tumors. Adv. Funct. Mater. 2021, 31, 2007188.

    Article  CAS  Google Scholar 

  48. Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

    Article  Google Scholar 

  49. Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674.

    Article  CAS  Google Scholar 

  50. Yao, S. C.; Wang, Z.; Li, L. L. Application of organic frame materials in cancer therapy through regulation of tumor microenvironment. Smart Mater. Med. 2022, 3, 230–242.

    Article  Google Scholar 

  51. Jiang, Y. Y.; Zhao, X. H.; Huang, J. G.; Li, J. C.; Upputuri, P. K.; Sun, H.; Han, X.; Pramanik, M.; Miao, Y. S.; Duan, H. W. et al. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 2020, 11, 1857.

    Article  CAS  Google Scholar 

  52. Pan, X. T.; Wang, W. W.; Huang, Z. J.; Liu, S.; Guo, J.; Zhang, F. R.; Yuan, H. J.; Li, X.; Liu, F. Y.; Liu, H. Y. MOF-derived doublelayer hollow nanoparticles with oxygen generation ability for multimodal imaging-guided sonodynamic therapy. Angew. Chem., Int. Ed. Engl. 2020, 59, 13557–13561.

    Article  CAS  Google Scholar 

  53. Ge, M.; Xu, D. L.; Chen, Z. X.; Wei, C. Y.; Zhang, Y. X.; Yang, C.; Chen, Y.; Lin, H.; Shi, J. L. Magnetostrictive-piezoelectric-triggered nanocatalytic tumor therapy. Nano Lett. 2021, 21, 6764–6772.

    Article  CAS  Google Scholar 

  54. Ma, X. Y.; Ren, X. L.; Guo, X. D.; Fu, C. H.; Wu, Q.; Tan, L. F.; Li, H. B.; Zhang, W.; Chen, X. D.; Zhong, H. S. et al. Multifunctional iron-based metal-organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials 2019, 214, 119223.

    Article  CAS  Google Scholar 

  55. Chen, T.; Gu, T. X.; Cheng, L.; Li, X.; Han, G. R.; Liu, Z. Porous Pt nanoparticles loaded with doxorubicin to enable synergistic chemo-/electrodynamic therapy. Biomaterials 2020, 255, 120202.

    Article  CAS  Google Scholar 

  56. Sun, B. W.; Bte Rahmat, J. N.; Zhang, Y. Advanced techniques for performing photodynamic therapy in deep-seated tissues. Biomaterials 2022, 291, 121875.

    Article  CAS  Google Scholar 

  57. Bansal, A.; Yang, F. Y.; Xi, T.; Zhang, Y.; Ho, J. S. In vivo wireless photonic photodynamic therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 1469–1474.

    Article  CAS  Google Scholar 

  58. Liu, Z.; Xu, L. L.; Zheng, Q.; Kang, Y.; Shi, B. J.; Jiang, D. J.; Li, H.; Qu, X. C.; Fan, Y. B.; Wang, Z. L. et al. Human motion driven self-powered photodynamic system for long-term autonomous cancer therapy. ACS Nano 2020, 14, 8074–8083.

    Article  CAS  Google Scholar 

  59. Guan, H. Y.; Zou, P. J.; Lin, R.; Xiao, L.; Fang, Z. Y.; Chen, J. Y.; Lin, T.; Wang, Y.; Peng, Y. F.; Zhong, T. Y. et al. Implantable self-powered therapeutic pellet for wireless photodynamic/sonodynamic hybrid therapy of cancer recurrence inhibition and tumor regression. Nano Energy 2023, 105, 108002.

    Article  CAS  Google Scholar 

  60. Kuang, H. Z.; Huang, S. Y.; Zhang, C.; Chen, J. K.; Shi, L.; Zeng, X. Y.; Li, Y. B.; Yang, Z. Y.; Wang, X. Z.; Dong, S. R. et al. Electric-field-resonance-based wireless triboelectric nanogenerators and sensors. ACS Appl. Mater. Interfaces 2022, 14, 794–804.

    Article  CAS  Google Scholar 

  61. Wen, F.; Wang, H.; He, T. Y. Y.; Shi, Q. F.; Sun, Z. D.; Zhu, M. L.; Zhang, Z. X.; Cao, Z. G.; Dai, Y. B.; Zhang, T. et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2020, 67, 104266.

    Article  CAS  Google Scholar 

  62. Li, Y. H.; Yu, J. R.; Wei, Y. C.; Wang, Y. F.; Feng, Z. Y.; Cheng, L. Q.; Huo, Z. W.; Lei, Y. Q.; Sun, Q. J. Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 2023, 23, 1329.

    Article  Google Scholar 

  63. Wang, L.; He, T. Y. Y.; Zhang, Z. X.; Zhao, L. B.; Lee, C.; Luo, G. X.; Mao, Q.; Yang, P.; Lin, Q. J.; Li, X. et al. Self-sustained autonomous wireless sensing based on a hybridized TENG and PEG vibration mechanism. Nano Energy 2021, 80, 105555.

    Article  CAS  Google Scholar 

  64. Yao, S. C.; Zheng, M. J.; Wang, Z.; Zhao, Y. C.; Wang, S. B.; Liu, Z. R.; Li, Z.; Guan, Y. Q.; Wang, Z. L.; Li, L. L. Self-powered, implantable, and wirelessly controlled NO generation system for intracranial neuroglioma therapy. Adv. Mater. 2022, 34, 2205881.

    Article  CAS  Google Scholar 

  65. Cabrales, L. E. B.; Montijano, J. I.; Schonbek, M.; Castañeda, A. R. S. A viscous modified Gompertz model for the analysis of the kinetics of tumors under electrochemical therapy. Math. Comput. Simul. 2018, 151, 96–110.

    Article  Google Scholar 

  66. Gu, T. X.; Wang, Y.; Lu, Y. H.; Cheng, L.; Feng, L. Z.; Zhang, H.; Li, X.; Han, G. R.; Liu, Z. Platinum nanoparticles to enable electrodynamic therapy for effective cancer treatment. Adv. Mater. 2019, 31, 1806803.

    Article  Google Scholar 

  67. Pintarelli, G. B.; Berkenbrock, J. A.; Rassele, A.; Rangel, M. M. M.; Suzuki, D. O. H. Computer simulation of commercial conductive gels and their application to increase the safety of electrochemotherapy treatment. Med. Eng. Phys. 2019, 74, 99–105.

    Article  CAS  Google Scholar 

  68. Vijh, A. K. Electrochemical treatment (ECT) of cancerous tumours: Necrosis involving hydrogen cavitation, chlorine bleaching, pH changes, electroosmosis. Int. J. Hydrogen Energy 2044, 99, 663–665.

    Google Scholar 

  69. Von Euler, H.; Olsson, J. M.; Hultenby, K.; Thörne, A.; Lagerstedt, A. S. Animal models for treatment of unresectable liver tumours: A histopathologic and ultra-structural study of cellular toxic changes after electrochemical treatment in rat and dog liver. Bioelectrochemistry 2003, 59, 89–98.

    Article  CAS  Google Scholar 

  70. Li, J. H.; Xin, Y. L.; Fan, X. Q.; Chen, J.; Wang, J.; Zhou, J. Effect of electrochemotherapy in treating patients with venous malformations. Chin. J. Integr. Med. 2013, 19, 387–393.

    Article  Google Scholar 

  71. Djokic, M.; Cemazar, M.; Bosnjak, M.; Dezman, R.; Badovinac, D.; Miklavcic, D.; Kos, B.; Stabuc, M.; Stabuc, B.; Jansa, R. et al. A prospective phase II study evaluating intraoperative electrochemotherapy of hepatocellular carcinoma. Cancers 2020, 12, 3778.

    Article  CAS  Google Scholar 

  72. Wei, D. Retracted: Generating energy from air: Solid state planar concentration cell based on graphene oxide. Adv. Mater. Technol. 2016, 1, 1600145.

    Article  Google Scholar 

  73. Pan, Y. H.; Wang, X. Z.; Zhang, W. Y.; Tang, L. Y.; Mu, Z. Y.; Liu, C.; Tian, B. L.; Fei, M. C.; Sun, Y. M.; Su, H. H. et al. Boosting the performance of single-atom catalysts via external electric field polarization. Nat. Commun. 2022, 13, 3063.

    Article  CAS  Google Scholar 

  74. Fried, S. D.; Bagchi, S.; Boxer, S. G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 2014, 346, 1510–1514.

    Article  CAS  Google Scholar 

  75. Shaik, S.; Mandal, D.; Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016, 8, 1091–1098.

    Article  CAS  Google Scholar 

  76. Chen, T.; Chu, Q.; Li, M. Y.; Han, G. R.; Li, X. Fe3O4@Pt nanoparticles to enable combinational electrodynamic/chemodynamic therapy. J. Nanobiotechnol. 2021, 19, 206.

    Article  CAS  Google Scholar 

  77. Lu, Z. J.; Gao, J. Y.; Fang, C.; Zhou, Y.; Li, X.; Han, G. R. Porous Pt nanospheres incorporated with GOx to enable synergistic oxygen-inductive starvation/electrodynamic tumor therapy. Adv. Sci. 2020, 7, 2001223.

    Article  CAS  Google Scholar 

  78. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  79. Yao, S. C.; Zhao, X. Y.; Wang, X. Y.; Huang, T.; Ding, Y. M.; Zhang, J. M.; Zhang, Z. Y.; Wang, Z. L.; Li, L. L. Bioinspired electron polarization of nanozymes with a human self-generated electric field for cancer catalytic therapy. Adv. Mater. 2022, 34, 2109568.

    Article  CAS  Google Scholar 

  80. Yao, S. C.; Zheng, M. J.; Wang, S. B.; Huang, T.; Wang, Z.; Zhao, Y. C.; Yuan, W.; Li, Z.; Wang, Z. L.; Li, L. L. Self-driven electrical stimulation promotes cancer catalytic therapy based on fully conjugated covalent organic framework nanocages. Adv. Funct. Mater. 2022, 32, 2209142.

    Article  CAS  Google Scholar 

  81. Zheng, M. J.; Yao, S. C.; Zhao, Y. C.; Wan, X. Y.; Hu, Q. H.; Tang, C. Y.; Jiang, Z. H.; Wang, S. B.; Liu, Z. R.; Li, L. L. Self-driven electrical stimulation-promoted cancer catalytic therapy and chemotherapy based on an implantable nanofibrous patch. ACS Appl. Mater. Interfaces 2023, 15, 7855–7866.

    Article  CAS  Google Scholar 

  82. Al Sawaftah, N. M.; Husseini, G. A. Ultrasound-mediated drug delivery in cancer therapy: A review. J. Nanosci. Nanotechnol. 2020, 20, 7211–7230.

    Article  CAS  Google Scholar 

  83. Snipstad, S.; Vikedal, K.; Maardalen, M.; Kurbatskaya, A.; Sulheim, E.; De Lange Davies, C. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Adv. Drug Deliv. Rev. 2021, 177, 113847.

    Article  CAS  Google Scholar 

  84. Zhao, Y. C.; Huang, T.; Zhang, X. D.; Cui, Y. B.; Zhang, L. L.; Li, L. L.; Wang, Z. L. Piezotronic and piezo-phototronic effects on sonodynamic disease therapy. BME Mat 2023, 1, e12006.

    Google Scholar 

  85. Sennoga, C. A.; Kanbar, E.; Auboire, L.; Dujardin, P. A.; Fouan, D.; Escoffre, J. M.; Bouakaz, A. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin. Drug Deliv. 2017, 14, 1031–1043.

    Article  CAS  Google Scholar 

  86. El Kaffas, A.; Gangeh, M. J.; Farhat, G.; Tran, W. T.; Hashim, A.; Giles, A.; Czarnota, G. J. Tumour vascular shutdown and cell death following ultrasound-microbubble enhanced radiation therapy. Theranostics 2018, 8, 314–327.

    Article  CAS  Google Scholar 

  87. Chen, S.; Zhu, P.; Mao, L. J.; Wu, W. C.; Lin, H.; Xu, D. L.; Lu, X. Y.; Shi, J. L. Piezocatalytic medicine: An emerging frontier using piezoelectric materials for biomedical applications. Adv. Mater., in press, https://doi.org/10.1002/adma.202208256.

  88. Zhu, P.; Chen, Y.; Shi, J. L. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv. Mater. 2020, 32, 2001976.

    Article  CAS  Google Scholar 

  89. Zhao, Y. C.; Wang, S. B.; Ding, Y. M.; Zhang, Z. Y.; Huang, T.; Zhang, Y. L.; Wan, X. Y.; Wang, Z. L.; Li, L. L. Piezotronic effect-augmented Cu2-xO-BaTiO3 sonosensitizers for multifunctional cancer dynamic therapy. ACS Nano 2022, 16, 9304–9316.

    Article  CAS  Google Scholar 

  90. Huang, G. M.; Qiu, Y.; Yang, F. F.; Xie, J. G.; Chen, X.; Wang, L. L.; Yang, H. H. Magnetothermally triggered free-radical generation for deep-seated tumor treatment. Nano Lett. 2021, 21, 2926–2931.

    Article  CAS  Google Scholar 

  91. Tang, Z. M.; Zhang, H. L.; Liu, Y. Y.; Ni, D. L.; Zhang, H.; Zhang, J. W.; Yao, Z. W.; He, M. Y.; Shi, J. L.; Bu, W. B. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 2017, 29, 1701683.

    Article  Google Scholar 

  92. Zhang, Y.; Wang, Y. Y.; Zhou, Q.; Chen, X. Y.; Jiao, W. B.; Li, G. L.; Peng, M. L.; Liu, X. L.; He, Y.; Fan, H. M. Precise regulation of enzyme-nanozyme cascade reaction kinetics by magnetic actuation toward efficient tumor therapy. ACS Appl. Mater. Interfaces 2021, 13, 52395–52405.

    Article  CAS  Google Scholar 

  93. Li, P.; Lee, G. H.; Kim, S. Y.; Kwon, S. Y.; Kim, H. R.; Park, S. From diagnosis to treatment: Recent advances in patient-friendly biosensors and implantable devices. ACS Nano 2021, 15, 1960–2004.

    Article  CAS  Google Scholar 

  94. Marland, J. R. K.; Gray, M. E.; Dunare, C.; Blair, E. O.; Tsiamis, A.; Sullivan, P.; González-Fernández, E.; Greenhalgh, S. N.; Gregson, R.; Clutton, R. E. et al. Real-time measurement of tumour hypoxia using an implantable microfabricated oxygen sensor. Sens. Bio Sens. Res. 2020, 30, 100375.

    Article  Google Scholar 

  95. Gil, B.; Ip, H.; Kassanos, P.; Lo, B.; Yang, G. Z.; Anastasova, S. Smart implanted access port catheter for therapy intervention with pH and lactate biosensors. Mater. Today Bio 2022, 15, 100298.

    Article  Google Scholar 

  96. Wang, L. Y.; Xie, S. L.; Wang, Z. Y.; Liu, F.; Yang, Y. F.; Tang, C. Q.; Wu, X. Y.; Liu, P.; Li, Y. J.; Saiyin, H. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 2020, 4, 159–171.

    Article  CAS  Google Scholar 

  97. Sonmezoglu, S.; Fineman, J. R.; Maltepe, E.; Maharbiz, M. M. Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant. Nat. Biotechnol. 2021, 39, 855–864.

    Article  CAS  Google Scholar 

  98. Zhang, Y. H.; Muthuraman, P.; Andino-Pavlovsky, V.; Uguz, I.; Elloian, J.; Shepard, K. L. Augmented ultrasonography with implanted CMOS electronic motes. Nat. Commun. 2022, 13, 3521.

    Article  CAS  Google Scholar 

  99. Guo, H. X.; Bai, W. B.; Ouyang, W.; Liu, Y. H.; Wu, C. S.; Xu, Y. M.; Weng, Y.; Zang, H.; Liu, Y. M.; Jacobson, L. et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat. Commun. 2022, 13, 3009.

    Article  CAS  Google Scholar 

  100. Vaddiraju, S.; Tomazos, I.; Burgess, D. J.; Jain, F. C.; Papadimitrakopoulos, F. Emerging synergy between nanotechnology and implantable biosensors: A review. Biosens. Bioelectron. 2010, 25, 1553–1565.

    Article  CAS  Google Scholar 

  101. Shin, G.; Gomez, A. M.; Al-Hasani, R.; Jeong, Y. R.; Kim, J.; Xie, Z. Q.; Banks, A.; Lee, S. M.; Han, S. Y.; Yoo, C. J. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 2017, 93, 509–521.e3.

    Article  CAS  Google Scholar 

  102. Nelson, B. D.; Karipott, S. S.; Wang, Y.; Ong, K. G. Wireless technologies for implantable devices. Sensors 2020, 20, 4604.

    Article  Google Scholar 

  103. Haque, S. U.; Duteanu, N.; Ciocan, S.; Nasar, A.; Inamuddin. A review: Evolution of enzymatic biofuel cells. J. Environ. Manage. 2021, 298, 113483.

    Article  CAS  Google Scholar 

  104. Wang, L. L.; Shao, H. H.; Lu, X. Z.; Wang, W. J.; Zhang, J. R.; Song, R. B.; Zhu, J. J. A glucose/O2 fuel cell-based self-powered biosensor for probing a drug delivery model with self-diagnosis and self-evaluation. Chem. Sci. 2018, 9, 8482–8491.

    Article  CAS  Google Scholar 

  105. Wang, L. L.; Zhang, J. R.; Wu, X. G.; Zhu, J. J. Advances in the enzymatic biofuel cell powered sensing systems for tumor diagnosis and regulation. TrAC Trends Anal. Chem. 2022, 146, 116476.

    Article  CAS  Google Scholar 

  106. Jin, X.; Bandodkar, A. J.; Fratus, M.; Asadpour, R.; Rogers, J. A.; Alam, M. A. Modeling, design guidelines, and detection limits of self-powered enzymatic biofuel cell-based sensors. Biosens. Bioelectron. 2020, 168, 112493.

    Article  CAS  Google Scholar 

  107. Zhang, J. L.; Wang, Y. H.; Huang, K.; Huang, K. J.; Jiang, H.; Wang, X. M. Enzyme-based biofuel cells for biosensors and in vivo power supply. Nano Energy 2021, 84, 105853.

    Article  CAS  Google Scholar 

  108. Zhang, D. Z.; Wang, D. Y.; Xu, Z. Y.; Zhang, X. X.; Yang, Y.; Guo, J. Y.; Zhang, B.; Zhao, W. H. Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord. Chem. Rev. 2021, 427, 213597.

    Article  CAS  Google Scholar 

  109. Zhu, M. L.; Yi, Z. R.; Yang, B.; Lee, C. Making use of nanoenergy from human-nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021, 36, 101016.

    Article  Google Scholar 

  110. Song, Y. D.; Wang, N.; Hu, C. S.; Wang, Z. L.; Yang, Y. Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors. Nano Energy 2021, 84, 105919.

    Article  CAS  Google Scholar 

  111. Mazzotta, A.; Carlotti, M.; Mattoli, V. Conformable on-skin devices for thermo-electro-tactile stimulation: Materials, design, and fabrication. Mater. Adv. 2021, 2, 1787–1820.

    Article  CAS  Google Scholar 

  112. Rebelo, R.; Barbosa A. I.; Correlo, V. M.; Reis, R. L. An outlook on implantable biosensors for personalized medicine. Engineering 2021, 7, 1696–1699.

    Article  Google Scholar 

  113. Ashammakhi, N.; Hernandez, A. L.; Unluturk, B. D.; Quintero, S. A.; Barros, N. R.; Hoque Apu, E.; Bin Shams, A.; Ostrovidov, S.; Li, J. X.; Contag, C. et al. Biodegradable implantable sensors: Materials design, fabrication, and applications. Adv. Funct. Mater. 2021, 31, 2104149.

    Article  CAS  Google Scholar 

  114. Rodrigues, D.; Barbosa, A. I.; Rebelo, R.; Kwon, I. K.; Reis, R. L.; Correlo, V. M. Skin-integrated wearable systems and implantable biosensors: A comprehensive review. Biosensors 2020, 10, 79.

    Article  Google Scholar 

  115. Chen, Y. F.; Kim, Y. S.; Tillman, B. W.; Yeo, W. H.; Chun, Y. Advances in materials for recent low-profile implantable bioelectronics. Materials 2018, 11, 522.

    Article  Google Scholar 

  116. Arciola, C. R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation, and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409.

    Article  CAS  Google Scholar 

  117. Wang, Y. M.; Wang, F.; Zhang, H.; Yu, B.; Cong, H. L.; Shen, Y. Q. Antibacterial material surfaces/interfaces for biomedical applications. Appl. Mater. Today 2021, 25, 101192.

    Article  Google Scholar 

  118. Duan, S.; Wu, R. N.; Xiong, Y. H.; Ren, H. M.; Lei, C. Y.; Zhao, Y. Q.; Zhang, X. Y.; Xu, F. J. Multifunctional antimicrobial materials: From rational design to biomedical applications. Prog. Mater. Sci. 2022, 125, 100887.

    Article  CAS  Google Scholar 

  119. Wang, Y.; Papadimitrakopoulos, F.; Burgess, D. J. Polymeric “smart” coatings to prevent foreign body response to implantable biosensors. J. Controlled Release 2013, 169, 341–347.

    Article  CAS  Google Scholar 

  120. Yu, B. Z.; Wang, C. Y.; Ju, Y. M.; West, L.; Harmon, J.; Moussy, Y.; Moussy, F. Use of hydrogel coating to improve the performance of implanted glucose sensors. Biosens. Bioelectron. 2008, 23, 1278–1284.

    Article  CAS  Google Scholar 

  121. Reith, G.; Schmitz-Greven, V.; Hensel, K. O.; Schneider, M. M.; Tinschmann, T.; Bouillon, B.; Probst, C. Metal implant removal: Benefits and drawbacks—A patient survey. BMC Surg. 2015, 15, 96.

    Article  Google Scholar 

  122. Zheng, Y. F.; Gu, X. N.; Witte, F. Biodegradable metals. Mater. Sci. Eng.: R: Rep. 2014, 77, 1–34.

    Article  Google Scholar 

  123. Li, C. M.; Guo, C. C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M. J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S. J.; Kaplan, D. L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2020, 5, 61–81.

    Article  Google Scholar 

  124. Han, S. A.; Lee, J. H.; Seung, W. C.; Lee, J. W.; Kim, S. W.; Kim, J. H. Patchable and implantable 2D nanogenerator. Small 2021, 17, e1903519.

    Article  Google Scholar 

  125. Koo, J. H.; Song, J. K.; Kim, D. H.; Son, D. Soft implantable bioelectronics. ACS Mater. Lett. 2021, 3, 1528–1540.

    Article  CAS  Google Scholar 

  126. Kim, E. H.; Park, S.; Kim, Y. K.; Moon, M.; Park, J.; Lee, K. J.; Lee, S.; Kim, Y. P. Self-luminescent photodynamic therapy using breast cancer targeted proteins. Sci. Adv. 2020, 6, eaba3009.

    Article  CAS  Google Scholar 

  127. Wang, Y. J.; Gong, N. Q.; Li, Y. J.; Lu, Q. C.; Wang, X.; Li, J. H. Atomic-level nanorings (A-NRs) therapeutic agent for photoacoustic imaging and photothermal/photodynamic therapy of cancer. J. Am. Chem. Soc. 2020, 142, 1735–1739.

    Article  CAS  Google Scholar 

  128. Jiang, M. Y.; Xue, Z. L.; Li, Y. B.; Liu, H. R.; Zeng, S. J.; Hao, J. H. A soft X-ray activated lanthanide scintillator for controllable NO release and gas-sensitized cancer therapy. Nanoscale Horiz. 2020, 5, 268–273.

    Article  Google Scholar 

  129. Zhou, X.; Li, H. D.; Shi, C.; Xu, F.; Zhang, Z.; Yao, Q. C.; Ma, H.; Sun, W.; Shao, K.; Du, J. J. et al. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials 2020, 253, 120089.

    Article  CAS  Google Scholar 

  130. Ge, M.; Guo, H. Y.; Zong, M.; Chen, Z. X.; Liu, Z.; Lin, H.; Shi, J. L. Bandgap-engineered germanene nanosheets as an efficient photodynamic agent for cancer therapy. Angew. Chem., Int. Ed. 2023, 62, e202215795.

    Article  CAS  Google Scholar 

  131. Wang, X. W.; Zhong, X. Y.; Bai, L. X.; Xu, J.; Gong, F.; Dong, Z. L.; Yang, Z. J.; Zeng, Z. J.; Liu, Z.; Cheng, L. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6527–6537.

    Article  CAS  Google Scholar 

  132. Wang, L. W.; Zhang, X. D.; You, Z.; Yang, Z. W.; Guo, M. Y.; Guo, J. W.; Liu, H.; Zhang, X. Y.; Wang, Z.; Wang, A. Z. et al. A molybdenum disulfide nanozyme with charge-enhanced activity for ultrasound-mediated cascade-catalytic tumor ferroptosis. Angew. Chem., Int. Ed. 2023, 62, e202217448.

    Article  CAS  Google Scholar 

  133. Ma, K. S.; Qi, G. H.; Wang, B.; Yu, T. F.; Zhang, Y.; Li, H. J.; Kitte, S. A.; Jin, Y. D. Ultrasound-activated Au/ZnO-based Trojan nanogenerators for combined targeted electro-stimulation and enhanced catalytic therapy of tumor. Nano Energy 2021, 87, 106208.

    Article  CAS  Google Scholar 

  134. Li, C.; Yang, X. Q.; An, J.; Cheng, K.; Hou, X. L.; Zhang, X. S.; Hu, Y. G.; Liu, B.; Zhao, Y. D. Red blood cell membrane-enveloped O2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics 2020, 10, 867–879.

    Article  CAS  Google Scholar 

  135. Zhong, X. Y.; Wang, X. W.; Cheng, L.; Tang, Y. A.; Zhan, G. T.; Gong, F.; Zhang, R.; Hu, J.; Liu, Z.; Yang, X. L. GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Adv. Funct. Mater. 2020, 30, 1907954.

    Article  CAS  Google Scholar 

  136. Zhang, H. L.; Li, J. J.; Chen, Y.; Wu, J. Y.; Wang, K.; Chen, L. J.; Wang, Y.; Jiang, X. W.; Liu, Y. Y.; Wu, Y. L. et al. Magneto-electrically enhanced intracellular catalysis of FePt–FeC heterostructures for chemodynamic therapy. Adv. Mater. 2021, 33, 2100472.

    Article  CAS  Google Scholar 

  137. Zhou, J.; Ma, Z.; Hong, X.; Wu, H. M.; Ma, S. Y.; Li, Y.; Chen, D. J.; Yu, H. Y.; Huang, X. J. Top-down strategy of implantable biosensor using adaptable, porous hollow fibrous membrane. ACS Sens. 2019, 4, 931–937.

    Article  CAS  Google Scholar 

  138. Molinnus, D.; Drinic, A.; Iken, H.; Kröger, N.; Zinser, M.; Smeets, R.; Köpf, M.; Kopp, A.; Schöning, M. J. Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk. Biosens. Bioelectron. 2021, 183, 113204.

    Article  CAS  Google Scholar 

  139. Nawito, M.; Richter, H.; Stett, A.; Burghartz, J. N. A programmable energy efficient readout chip for a multiparameter highly integrated implantable biosensor system. Adv. Radio Sci. 2015, 13, 103–108.

    Article  Google Scholar 

  140. Psychoyios, V. N.; Nikoleli, G. P.; Tzamtzis, N.; Nikolelis, D. P.; Psaroudakis, N.; Danielsson, B.; Israr, M. Q.; Willander, M. Potentiometric cholesterol biosensor based on ZnO nanowalls and stabilized polymerized lipid film. Electroanalysis 2013, 25, 367–372.

    Article  CAS  Google Scholar 

  141. Pathiraja, A. A.; Weerakkody, R. A.; Von Roon, A. C.; Ziprin, P.; Bayford, R. The clinical application of electrical impedance technology in the detection of malignant neoplasms: A systematic review. J. Transl. Med. 2020, 18, 227.

    Article  Google Scholar 

  142. Nguyen, K. T.; Kim, H. Y.; Park, J. O.; Choi, E.; Kim, C. S. Tripolar electrode electrochemical impedance spectroscopy for endoscopic devices toward early colorectal tumor detection. ACS Sens. 2022, 7, 632–640.

    Article  CAS  Google Scholar 

  143. Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71–76.

    Article  CAS  Google Scholar 

  144. Harary, M.; Dolmans, R. G. F.; Gormley, W. B. Intracranial pressure monitoring-review and avenues for development. Sensors 2018, 18, 465.

    Article  Google Scholar 

  145. Kidoguchi, S.; Sugano, N.; Tokudome, G.; Yokoo, T.; Yano, Y.; Hatake, K.; Nishiyama, A. New concept of onco-hypertension and future perspectives. Hypertension 2021, 77, 16–27.

    Article  CAS  Google Scholar 

  146. Boutry, C. M.; Beker, L.; Kaizawa, Y.; Vassos, C.; Tran, H.; Hinckley, A. C.; Pfattner, R.; Niu, S. M.; Li, J. H.; Claverie, J. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 2019, 3, 47–57.

    Article  CAS  Google Scholar 

  147. Okamoto, K.; Watanabe, T.; Komeda, Y.; Kono, T.; Takashima, K.; Okamoto, A.; Kono, M.; Yamada, M.; Arizumi, T.; Kamata, K. et al. Risk factors for postoperative bleeding in endoscopic submucosal dissection of colorectal tumors. Oncology 2017, 93, 35–42.

    Article  Google Scholar 

  148. Abboud, T.; Hahn, G.; Just, A.; Paidhungat, M.; Nazarenus, A.; Mielke, D.; Rohde, V. An insight into electrical resistivity of white matter and brain tumors. Brain Stimul. 2021, 14, 1307–1316.

    Article  Google Scholar 

  149. Yang, L.; Zhao, Y.; Xu, W. J.; Shi, E. Z.; Wei, W. J.; Li, X. M.; Cao, A. Y.; Cao, Y. P.; Fang, Y. Highly crumpled all-carbon transistors for brain activity recording. Nano Lett. 2017, 17, 71–77.

    Article  CAS  Google Scholar 

  150. Fan, J. L.; Xuan, M. J.; Zhao, P. K.; Loznik, M.; Chen, J. L.; Kiessling, F.; Zheng, L. F.; Herrmann, A. Ultrasound responsive microcapsules for antibacterial nanodrug delivery. Nano Res. 2023, 16, 2738–2748.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Nature Science Foundation of China (Nos. 82072065 and 82202333), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA16021103), the Fundamental Research Funds for the Central Universities (Nos. E2EG6802X2 and E2E46801), the China Postdoctoral Science Foundation (Nos. BX2021299 and 2021M703166), and the National Youth Talent Support Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhirong Liu or Linlin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Yue, Z., Liu, Z. et al. Recent advances of implantable systems and devices in cancer therapy and sensing. Nano Res. 16, 11653–11666 (2023). https://doi.org/10.1007/s12274-023-5808-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5808-6

Keywords

Navigation