Skip to main content
Log in

Tannic acid coated single-wall carbon nanotube membranes for the recovery of Au from trace-level solutions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 04 October 2023

This article has been updated

Abstract

The efficient recovery of gold from industrial sewage is important for saving precious metals and remains a big challenge. We report the extraction of gold ions from a trace-level aqueous solution using a tannic acid (TA) coated single-wall carbon nanotube (SWCNT) film. The TA has many redox ligands that efficiently adsorb Au(III) from the solution and reduce them to Au particles. The interwoven SWCNTs not only act as a framework to improve the mechanical stability of the hybrid membrane, but also provide abundant paths for H2O transport, and facilitate the full exposure of the TA. As a result, the hybrid membrane has an excellent ability to capture gold ions from solution with a high flux of 157 L/(m2·h·bar), and an ultra-high adsorption capacity of 2095 mg/g from solutions with an extremely low gold concentration of 20 ppm. The adsorbed gold ions are reduced to Au particles, which can be easily collected by oxidation. The recovered Au nanoparticles on the TA–SWCNT hybrid film had a remarkable surface-enhanced Raman scattering effect that enabled the sensitive detection of rhodamine 6G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Yang, T. H.; Ahn, J.; Shi, S.; Wang, P.; Gao, R. Q.; Qin, D. Noble-metal nanoframes and their catalytic applications. Chem. Rev. 2021, 121, 796–833.

    CAS  Google Scholar 

  2. Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 2008, 3, 168–173.

    CAS  Google Scholar 

  3. Chintawar, C. C.; Yadav, A. K.; Kumar, A.; Sancheti, S. P.; Patil, N. T. Divergent gold catalysis: Unlocking molecular diversity through catalyst control. Chem. Rev. 2021, 121, 8478–8558.

    CAS  Google Scholar 

  4. Yang, D.; Zhu, Y. Evolution of catalytic activity driven by structural fusion of icosahedral gold cluster cores. Chin. J. Catal. 2021, 42, 245–250.

    CAS  Google Scholar 

  5. Petter, P. M. H.; Veit, H. M.; Bernardes, A. M. Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Manage 2014, 34, 475–482.

    CAS  Google Scholar 

  6. Prabowo, B. A.; Purwidyantri, A.; Liu, B.; Lai, H. C.; Liu, K. C. Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor. Nanotechnology 2021, 32, 095503.

    CAS  Google Scholar 

  7. Chen, S. C.; Chen, K. T.; Jou, A. F. J. Polydopamine-gold composite-based electrochemical biosensor using dual-amplification strategy for detecting pancreatic cancer-associated microRNA. Biosens. Bioelectron. 2021, 173, 112815.

    CAS  Google Scholar 

  8. Piergies, N.; Oćwieja, M.; Paluszkiewicz, C.; Kwiatek, W. M. Nanoparticle stabilizer as a determining factor of the drug/gold surface interaction: SERS and AFM-SEIRA studies. Appl. Surf. Sci. 2021, 537, 147897.

    CAS  Google Scholar 

  9. Liu, J. Y.; Deng, Z.; Yu, H. J.; Wang, L. Ferrocene-based metal-organic framework for highly efficient recovery of gold from WEEE. Chem. Eng. J. 2021, 410, 128360.

    CAS  Google Scholar 

  10. Chen, M. J.; Zhang, S.; Huang, J. X.; Chen, H. Y. Lead during the leaching process of copper from waste printed circuit boards by five typical ionic liquid acids. J. Clean. Prod. 2015, 95, 142–147.

    Google Scholar 

  11. Lu, C. Y.; Zhang, L.; Zhong, Y. G.; Ren, W. X.; Tobias, M.; Mu, Z. L.; Ma, Z. X.; Geng, Y.; Xue, B. An overview of e-waste management in China. J. Mater. Cycles Waste Manage. 2015, 17, 1–12.

    Google Scholar 

  12. Xiong, Y.; Adhikari, C. R.; Kawakita, H.; Ohto, K.; Inoue, K.; Harada, H. Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresour. Technol. 2009, 100, 4083–4089.

    CAS  Google Scholar 

  13. Ilyas, S.; Srivastava, R. R.; Kim, H.; Das, S.; Singh, V. K. Circular bioeconomy and environmental benignness through microbial recycling of e-waste: A case study on copper and gold restoration. Waste Manage 2021, 121, 175–185.

    CAS  Google Scholar 

  14. Zhang, S. H.; Gu, Y. F.; Tang, A. J.; Li, B. H.; Li, B.; Pan, D. A.; Wu, Y. F. Forecast of future yield for printed circuit board resin waste generated from major household electrical and electronic equipment in China. J. Clean. Prod. 2021, 283, 124575.

    CAS  Google Scholar 

  15. Li, F.; Zhu, J. Y.; Sun, P. Z.; Zhang, M. R.; Li, Z. Q.; Xu, D. X.; Gong, X. Y.; Zou, X. L.; Geim, A. K.; Su, Y. et al. Highly efficient and selective extraction of gold by reduced graphene oxide. Nat. Commun. 2022, 13, 4472.

    CAS  Google Scholar 

  16. Yue, C. L.; Sun, H. M.; Liu, W. J.; Guan, B. B.; Deng, X. D.; Zhang, X.; Yang, P. Environmentally benign, rapid, and selective extraction of gold from ores and waste electronic materials. Angew. Chem. 2017, 129, 9459–9463.

    Google Scholar 

  17. Hong, Y.; Thirion, D.; Subramanian, S.; Yoo, M.; Choi, H.; Kim, H. Y.; Stoddart, J. F.; Yavuz, C. T. Precious metal recovery from electronic waste by a porous porphyrin polymer. Proc. Natl. Acad. Sci. USA 2020, 117, 16174–16180.

    CAS  Google Scholar 

  18. Zhao, F. N.; Peydayesh, M.; Ying, Y. B.; Mezzenga, R.; Ping, J. F. Transition metal dichalcogenide-silk nanofibril membrane for one-step water purification and precious metal recovery. ACS Appl. Mater. Interfaces 2020, 12, 24521–24530.

    CAS  Google Scholar 

  19. Bolisetty, S.; Mezzenga, R. Amyloid-carbon hybrid membranes for universal water purification. Nat. Nanotechnol. 2016, 11, 365–371.

    CAS  Google Scholar 

  20. Peydayesh, M.; Bolisetty, S.; Mohammadi, T.; Mezzenga, R. Assessing the binding performance of amyloid-carbon membranes toward heavy metal ions. Langmuir 2019, 35, 4161–4170.

    CAS  Google Scholar 

  21. Marcus, Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 1991, 87, 2995–2999.

    CAS  Google Scholar 

  22. Cheng, R. F.; Hu, T.; Hu, M. M.; Li, C. J.; Liang, Y.; Wang, Z. H.; Zhang, H.; Li, M. C.; Wang, H. L.; Lu, H. X. et al. MXenes induce epitaxial growth of size-controlled noble nanometals: A case study for surface enhanced Raman scattering (SERS). J. Mater. Sci. Technol. 2020, 40, 119–127.

    CAS  Google Scholar 

  23. Sun, D. T.; Gasilova, N.; Yang, S. L.; Oveisi, E.; Queen, W. L. Rapid, selective extraction of trace amounts of gold from complex water mixtures with a metal-organic framework (MOF)/polymer composite. J. Am. Chem. Soc. 2018, 140, 16697–16703.

    CAS  Google Scholar 

  24. Wang, C. M.; Cheng, R. F.; Hou, P. X.; Ma, Y. H.; Majeed, A.; Wang, X. H.; Liu, C. MXene–carbon nanotube hybrid membrane for robust recovery of Au from trace-level solution. ACS Appl. Mater. Interfaces 2020, 12, 43032–43041.

    CAS  Google Scholar 

  25. Yang, F. C.; Yan, Z. G.; Zhao, J.; Miao, S. T.; Wang, D.; Yang, P. Rapid capture of trace precious metals by amyloid-like protein membrane with high adsorption capacity and selectivity. J. Mater. Chem. A 2020, 8, 3438–3449.

    CAS  Google Scholar 

  26. Yang, Q. M.; Cao, J.; Yang, F. C.; Liu, Y. C.; Chen, M. M.; Qin, R. R.; Chen, L. X.; Yang, P. Amyloid-like aggregates of bovine serum albumin for extraction of gold from ores and electronic waste. Chem. Eng. J. 2021, 416, 129066.

    CAS  Google Scholar 

  27. Tong, S. S.; Zhao, S. J.; Zhou, W. H.; Li, R. G.; Jia, Q. Modification of multi-walled carbon nanotubes with tannic acid for the adsorption of La, Tb and Lu ions. Microchim. Acta 2011, 174, 257–264.

    CAS  Google Scholar 

  28. Thebo, K. H.; Qian, X. T.; Zhang, Q.; Chen, L.; Cheng, H. M.; Ren, W. C. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 2018, 9, 1486.

    Google Scholar 

  29. Ţucureanu, V.; Matei, A.; Avram, A. M. FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 2016, 46, 502–520.

    Google Scholar 

  30. Liu, R.; Ge, H. W.; Wang, X.; Luo, J.; Li, Z. Q.; Liu, X. Y. Three-dimensional Ag-tannic acid-graphene as an antibacterial material. New J. Chem. 2016, 40, 6332–6339.

    CAS  Google Scholar 

  31. Okpalugo, T. I. T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. M. D. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161.

    CAS  Google Scholar 

  32. Gowthaman, N. S. K.; Abraham John, S.; Tominaga, M. Fast growth of Au-Pt bimetallic nanoparticles on SWCNTs: Composition dependent electrocatalytic activity towards glucose and hydrogen peroxide. J. Electroanal. Chem. 2017, 798, 24–33.

    CAS  Google Scholar 

  33. Hideki, Y.; Ryuichi, S.; Ding, Z. J. Energy loss functions derived by Monte Carlo simulation from the Au 4f XPS spectrum. Surf. Sci. 1992, 261, 403–411.

    Google Scholar 

  34. Zhang, L.; Wang, S. G. Correlation of materials property and performance with internal structures evolvement revealed by laboratory X-ray tomography. Materials 2018, 11, 1795.

    Google Scholar 

  35. Guin, P. S.; Das, S.; Mandal, P. C. Electrochemical reduction of quinones in different media: A review. Int. J. Electrochem. 2011, 2011, 816202.

    Google Scholar 

  36. Kim, J.; Kim, K. R.; Hong, Y.; Choi, S.; Yavuz, C. T.; Kim, J. W.; Nam, Y. S. Photochemically enhanced selective adsorption of gold ions on tannin-coated porous polymer microspheres. ACS Appl. Mater. Interfaces 2019, 11, 21915–21925.

    CAS  Google Scholar 

  37. Huang, X.; Wang, Y. P.; Liao, X. P.; Shi, B. Adsorptive recovery of Au3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica. J. Hazard. Mater. 2010, 183, 793–798.

    CAS  Google Scholar 

  38. Gurung, M.; Adhikari, B. B.; Kawakita, H.; Ohto, K.; Inoue, K.; Alam, S. Recovery of Au(III) by using low cost adsorbent prepared from persimmon tannin extract. Chem. Eng. J. 2011, 174, 556–563.

    CAS  Google Scholar 

  39. Kim, K. R.; Choi, S.; Yavuz, C. T.; Nam, Y. S. Direct Z-scheme tannin–TiO2 heterostructure for photocatalytic gold ion recovery from electronic waste. ACS Sustainable Chem. Eng. 2020, 8, 7359–7370.

    CAS  Google Scholar 

  40. Speight, J. G. Lange’s Handbook of Chemistry, 17th ed.; McGraw-Hill: New York, 2016.

    Google Scholar 

  41. Shi, Y. M.; Kim, K. K.; Reina, A.; Hofmann, M.; Li, L. J.; Kong, J. Work function engineering of graphene electrode via chemical doping. ACS Nano 2010, 4, 2689–2694.

    CAS  Google Scholar 

  42. Li, G. X.; Hou, P. X.; Luan, J.; Li, J. C.; Li, X.; Wang, H.; Shi, C.; Liu, C.; Cheng, H. M. A MnO2 nanosheet/single–wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors. Carbon 2018, 140, 634–643.

    CAS  Google Scholar 

  43. Gao, D.; Liu, R. H.; Yu, W.; Luo, Z. L.; Liu, C. H.; Fan, S. S. Gravity-induced self-charging in carbon nanotube/polymer supercapacitors. J. Phys. Chem. C 2019, 123, 5249–5254.

    CAS  Google Scholar 

  44. Chen, J. P.; Zhu, X. S. Magnetic solid phase extraction using ionic liquid-coated core–shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of rhodamine B in food samples. Food Chem. 2016, 200, 10–15.

    CAS  Google Scholar 

  45. Chao, Y. H.; Pang, J. Y.; Bai, Y.; Wu, P. W.; Luo, J.; He, J.; Jin, Y.; Li, X. W.; Xiong, J.; Li, H. M. et al. Graphene-like BN@SiO2 nanocomposites as efficient sorbents for solid-phase extraction of rhodamine B and rhodamine 6G from food samples. Food Chem. 2020, 320, 126666.

    CAS  Google Scholar 

  46. Li, Y. Y.; He, W. Y.; Peng, Q. C.; Hou, L. Y.; He, J.; Li, K. Aggregation-induced emission luminogen based molecularly imprinted ratiometric fluorescence sensor for the detection of rhodamine 6G in food samples. Food Chem. 2019, 287, 55–60.

    CAS  Google Scholar 

  47. Wang, J.; Li, J. Y.; Zeng, C.; Qu, Q.; Wang, M. F.; Qi, W.; Su, R. X.; He, Z. M. Sandwich-like sensor for the highly specific and reproducible detection of rhodamine 6G on a surface-enhanced Raman scattering platform. ACS Appl. Mater. Interfaces 2020, 12, 4699–4706.

    CAS  Google Scholar 

  48. Thaler, S.; Haritoglou, C.; Choragiewicz, T. J.; Messias, A.; Baryluk, A.; May, C. A.; Rejdak, R.; Fiedorowicz, M.; Zrenner, E.; Schuettauf, F. In vivo toxicity study of rhodamine 6G in the rat retina. Invest. Ophthalmol. Vis. Sci. 2008, 49, 2120–2126.

    Google Scholar 

  49. Lu, Z.; Wei, W. X.; Yang, J. J.; Xu, Q.; Hu, X. Y. Improved SERS performance of a silver triangular nanoparticle/TiO2 nanoarray heterostructure and its application for food additive detection. New J. Chem. 2022, 46, 7070–7077.

    CAS  Google Scholar 

  50. Xie, L. M.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z. F. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J. Am. Chem. Soc. 2009, 131, 9890–9891.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52188101, 52130209, 52072375, and 51872293), the Liaoning Revitalization Talents Program (No. XLYC2002037), and a Basic Research Project of the Natural Science Foundation of Shandong Province, China (No. ZR2019ZD49).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-Xiang Hou or Chang Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Hou, PX., Zhao, Y. et al. Tannic acid coated single-wall carbon nanotube membranes for the recovery of Au from trace-level solutions. Nano Res. 16, 11350–11357 (2023). https://doi.org/10.1007/s12274-023-5803-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5803-y

Keywords

Navigation