Skip to main content
Log in

An Impedimetric Sensor Comprising Magnetic Nanoparticles–Graphene Oxide and Carbon Nanotube for the Electrocatalytic Oxidation of Salicylic Acid

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

An effective and facile electrocatalytic oxidation approach for the determination of salicylic acid (SA) on the surface of Ni-2,3-pyrazine dicarboxylic acid (Ni-PDA)/Fe3O4 magnetic nanoparticles/graphene oxide (GO)/carbon nanotube (CNTs) modified carbon paste electrode was demonstrated in this article. The GO sheets and CNTs were interlinked by ultrafine Fe3O4 nanoparticles forming three dimensional (3D) architectures. The characterization of the nanocomposites was studied by scanning electron microscopy, energy-dispersive X-ray, X-ray diffraction, and wavelength-dispersive X-ray spectroscopy. The electrochemical performance of the Ni-PDA film and the parameters affecting its activity were also investigated by cyclic voltammetry, and electrochemical impedance spectroscopy. The data revealed that the modified electrode present considerable electrocatalytic activity toward SA oxidation. The effects of some parameters such as the different scan rates, pH, and SA concentrations were also evaluated to provide catalysis mechanism for SA oxidation at the surface of modified electrode. Furthermore, impedimetric studies showed that the fabricated electrode as the sensing element has a detection capability of 900 nM allowing the quantitative analysis of SA in the concentration range from 5.00 to 155 µM. Remarkable advantages of the prepared modified electrode such as low detection limit, wide linear range of concentration and high sensitivity make it as good sensor for the selective determination of SA.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.G. Manjunatha, B.E.K. Swamy, O. Gilbert, G.P. Mamatha, B.S. Sherigara, Electrochem. Sci. 5, 682 (2010)

    CAS  Google Scholar 

  2. Z. Wang, F. Ai, Q. Xu, Q. Yang, J.H. Yu, W.H. Huang, Y.D. Zhao, Colloids. Surf. B 76, 370 (2010)

    Article  CAS  Google Scholar 

  3. R.A. Medina, F.M.L. Cordova, O.P. Barrales, M.A. Diaz, Int. J. Pharm. 216, 95 (2001)

    Article  Google Scholar 

  4. Z. Kokot, K. Burda, J. Pharm. Biomed. Anal 18, 871 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. M.S. Marcelo, G.T. Marcello, J.P. Ronei, Talanta 68, 1707 (2006)

    Article  CAS  Google Scholar 

  6. F. Kees, D. Jehnich, H. Grobecker, J. Chromatogr. B 677, 172 (1996)

    Article  Google Scholar 

  7. J.F. Jena, Y.Y. Tsaia, T.C. Yang, J. Chromatogr. A 912, 39 (2001)

    Article  Google Scholar 

  8. T. Kakkar, M. Mayersohn, J. Chromatogr. B 718, 69 (1998)

    Article  CAS  Google Scholar 

  9. G.A. Rivas, J.M. Calatayud, Talanta 42, 1285 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. W. Sun, M. Yang, Y. Li, Q. Jiang, S. Liu, K. Jiao, J. Pharm. Biomed. 48, 1326 (2009)

    Article  CAS  Google Scholar 

  11. A. Azadbakht, M.B. Gholivand, S. Menati, Electrochim. Acta 78, 82 (2012)

    Article  CAS  Google Scholar 

  12. H. Razmi, A. Azadbakht, Electrochim. Acta 50, 2193 (2005)

    Article  CAS  Google Scholar 

  13. M.B. Gholivand, A. Azadbakht, Electrochim. Acta 50, 10044 (2011)

    Article  CAS  Google Scholar 

  14. A. Azadbakht, M.B. Gholivand, Electrochim. Acta 125, 9 (2014)

    Article  CAS  Google Scholar 

  15. A. Azadbakht, M.B. Gholivand, Electrochim. Acta 133, 82 (2014)

    Article  CAS  Google Scholar 

  16. A. Azadbakht, A.R. Abbasi, Z. Derikvand, Z. Karimi, Nano-Micro Lett. 7, 152 (2015)

    Article  CAS  Google Scholar 

  17. A. Azadbakht, A.R. Abbasi, Z. Derikvand, Z. Karimi, J. Electroanal. Chem. 757, 277 (2015)

    Article  CAS  Google Scholar 

  18. M. Doulache, A. Benchettara, J. Anal. Chem. 69, 51 (2014)

    Article  CAS  Google Scholar 

  19. S.M. Ghoreishi, F. Zeraatkar Kashani, A. Khoobi, M. Enhessari, J. Mol. Liq. 211, 970 (2015)

    Article  CAS  Google Scholar 

  20. M. Khan, E. Yilmaz, B. Sevinc, E. Sahmetlioglu, J. Shah, M. Rasul Jan, M. Soylak, Talanta 146, 130 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. H. Wang, H. Dai, Chem. Soc. Rev. 42, 3088 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. X. Zhou, Z. Dai, S. Liu, J. Bao, Y.G. Guo, Adv. Mater. 26, 3943 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. L. Zhang, G. Zhang, H.B. Wu, L. Yu, X.W. Lou, Adv. Mater. 25, 2589 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  25. Y. Kim, D. Kim, C.S. Lee, Phys. B 337, 42 (2003)

    Article  CAS  Google Scholar 

  26. G. Vaidyanathan, S. Sendhilnathan, R. Arulmurugan, J. Magn. Magn. Mater. 313, 293 (2007)

    Article  CAS  Google Scholar 

  27. J.A. Lopez, F. González, F.A. Bonilla, G. Zambrano, M.E. Gómez, Am. Metal. Mater. 30, 60 (2010)

    Google Scholar 

  28. S. Jahanbani, A. Benvidi, Mat. Sci. Eng. C 68, 1 (2016)

    Article  CAS  Google Scholar 

  29. A. Benvidi, S. Jahanbani, A. Akbari, H.R. Zare, J. Electroanal. Chem. 758, 68 (2015)

    Article  CAS  Google Scholar 

  30. E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. 101, 19 (1979)

    Article  CAS  Google Scholar 

  31. A. Ciszewski, Electroanalysis 7, 1132 (1995)

    Article  CAS  Google Scholar 

  32. M.B. Gholivand, A. Pashabadia, A. Azadbakht, S. Menati, Electrochim. Acta 56, 4022 (2011)

    Article  CAS  Google Scholar 

  33. M.B. Gholivand, A. Azadbakht, Mat. Sci. Eng. C 32, 1955 (2012)

    Article  CAS  Google Scholar 

  34. G. Roslonek, J. Taraszewska, J. Electroanal. Chem. 325, 285 (1992)

    Article  CAS  Google Scholar 

  35. A.A.J. Torriero, J.M. Luco, L. Sereno, J. Raba, Talanta 62, 247 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. Z. Wang, F. Wei, S.Y. Liu, Q. Xu, J.Y. Huang, X.Y. Dong, J.H. Yu, Q. Yang, Y.D. Zhao, H. Chen, Talanta 80, 1277 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. W.D. Zhang, B. Xu, Y.X. Hong, Y.X. Yu, J.S. Ye, J.Q. Zhang, J. Solid. State. Electrochem. 14, 1713 (2010)

    Article  CAS  Google Scholar 

  38. J.A. Harrison, Z.A. Khan, J. Electroanal. Chem. 28, 131 (1970)

    Article  CAS  Google Scholar 

  39. F.W. Xie, A.A. Yu, Y.A. Cheng, R.B. Qi, Q.Y. Li, H.M. Liu, S.S. Zhang, Chromatographia 72, 1207 (2010)

    Article  CAS  Google Scholar 

  40. M. Doulachea, A. Benchettaraa, M. Trari, J. Anal. Chem. 69, 51 (2014)

    Article  CAS  Google Scholar 

  41. P.J. Tseng, C.Y. Wang, Z.Y. Huang, Y.Y. Zhuang, S.F. Fu, Y.W. Lin, Anal. Methods 6, 1759 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by the Khorramabad Branch, Islamic Azad University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Azadbakht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derikvand, H., Azadbakht, A. An Impedimetric Sensor Comprising Magnetic Nanoparticles–Graphene Oxide and Carbon Nanotube for the Electrocatalytic Oxidation of Salicylic Acid. J Inorg Organomet Polym 27, 901–911 (2017). https://doi.org/10.1007/s10904-017-0535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0535-7

Keywords

Navigation