Skip to main content
Log in

Urea-assisted morphological engineering of MFI nanosheets with tunable b-thickness

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Engineering of crystal morphology affects the catalytic and adsorption properties of zeolitic materials. Considering the anisotropic diffusion of molecules derived from its topological features, MFI zeolite nanosheets with short b-axis thickness are highly desired materials to reduce diffusion resistance. However, the design and development of eco-friendly synthesis protocols with reasonable cost and high efficiency remain elusive. Herein, we reported a systematic study on the synthesis of MFI nanosheets using urea as an additive. Both silicalite-1 and ZSM-5 zeolites (MFI type framework structure) with controllable b-thicknesses ranging from 50–200 nm were achieved by optimizing the synthetic parameters including water content, urea and SDA concentrations. The concentration of hydroxide anions was found to dominate the crystallization kinetics compared with the counterpart tetrapropylammonium cations (TPA+). To facilitate the crystal growth of MFI zeolites in the presence of urea, the ratio OH/SiO2 has to be higher than 0.2, independent of the TPA+ concentration. The role of urea in the assistance of plate-like crystal formation through the inhibition of (010) facet growth was revealed by electron microscopy and infrared (IR) spectroscopy analyses. The developed strategy for morphological engineering is not limited to the MFI-type zeolite and can be applied to other frameworks depending on the intrinsic properties of additive molecules and the interactions between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradley, S. A.; Broach, R. W.; Mezza, T. M.; Prabhakar, S.; Sinkler, W. Zeolite characterization. In Zeolites in Industrial Separation and Catalysis. Kulprathipanja, S., Ed.; Wiley-VCH: Weinheim, 2010; pp 85–171.

    Google Scholar 

  2. Liu, Z. Q.; Zhou, J.; Tang, X. M.; Liu, F. J.; Yuan, J. M.; Li, G. C.; Huang, L.; Krishna, R.; Huang, K.; Zheng, A. M. Dependence of zeolite topology on alkane diffusion inside diverse channels. AiChE J. 2020, 66, e16269.

    CAS  Google Scholar 

  3. Teketel, S.; Lundegaard, L. F.; Skistad, W.; Chavan, S. M.; Olsbye, U.; Lillerud, K. P.; Beato, P.; Svelle, S. Morphology-induced shape selectivity in zeolite catalysis. J. Catal. 2015, 327, 22–32.

    CAS  Google Scholar 

  4. Hwang, Y. K.; Chang, J. S.; Park, S. E.; Kim, D. S.; Kwon, Y. U.; Jhung, S. H.; Hwang, J. S.; Park, M. S. Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications. Angew. Chem., Int. Ed. 2005, 44, 556–560.

    CAS  Google Scholar 

  5. Pagis, C.; Morgado Prates, A. R.; Farrusseng, D.; Bats, N.; Tuel, A. Hollow zeolite structures: An overview of synthesis methods. Chem. Mater. 2016, 28, 5205–5223.

    CAS  Google Scholar 

  6. Opanasenko, M. V.; Roth, W. J.; Cejka, J. Two-dimensional zeolites in catalysis: Current status and perspectives. Catal. Sci. Technol. 2016, 6, 2467–2484.

    CAS  Google Scholar 

  7. Pérez-Ramírez, J.; Christensen, C. H.; Egeblad, K.; Christensen, C. H.; Groen, J. C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008, 37, 2530–2542.

    Google Scholar 

  8. Mintova, S.; Gilson, J. P.; Valtchev, V. Advances in nanosized zeolites. Nanoscale 2013, 5, 6693–6703.

    CAS  Google Scholar 

  9. Liu, X. L.; Shi, J.; Yang, G.; Zhou, J.; Wang, C. M.; Teng, J. W.; Wang, Y. D.; Xie, Z. K. A diffusion anisotropy descriptor links morphology effects of H-ZSM-5 zeolites to their catalytic cracking performance. Commun. Chem. 2021, 4, 107.

    CAS  Google Scholar 

  10. Degnan, T. F.; Chitnis, G. K.; Schipper, P. H. History of ZSM-5 fluid catalytic cracking additive development at Mobil: Dedicated to the late Werner O. Haag in appreciation of his outstanding contributions to heterogeneous catalysis and zeolite science. Microporous Mesoporous Mater. 2000, 35–36, 245–252.

    Google Scholar 

  11. Wise, J. J. Isomerization and disproportionation of alkyl aromatics. U. S. Patent 3377400, April 09, 1968.

  12. Chen, N. Y. Personal perspective of the development of para selective ZSM-5 catalysts. Ind. Eng. Chem. Res. 2001, 40, 4157–4161.

    CAS  Google Scholar 

  13. Hong, U.; Kärger, J.; Kramer, R.; Pfeifer, H.; Seiffert, G.; Müller, U.; Unger, K. K.; Lück, H. B.; Ito, T. PFG n.m.r. study of diffusion anisotropy in oriented ZSM-5 type zeolite crystallites. Zeolites 1991, 11, 816–821.

    CAS  Google Scholar 

  14. Ji, Y.; Liu, Z. M.; Zhao, Z. C.; Gao, P.; Bao, X. H.; Chen, K. Z.; Hou, G. J. Untangling framework confinements: A dynamical study on bulky aromatic molecules in MFI zeolites. ACS Catal. 2022, 12, 15288–15297.

    CAS  Google Scholar 

  15. Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009, 461, 246–249.

    CAS  Google Scholar 

  16. Jeon, M. Y.; Kim, D.; Kumar, P.; Lee, P. S.; Rangnekar, N.; Bai, P.; Shete, M.; Elyassi, B.; Lee, H. S.; Narasimharao, K. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 2017, 543, 690–694.

    CAS  Google Scholar 

  17. Guth, J. L.; Kessler, H.; Wey, R. New route to pentasil-type zeolites using a non alkaline medium in the presence of fluoride ions. Stud. Surf. Sci. Catal. 1986, 28, 121–128.

    CAS  Google Scholar 

  18. Louis, B.; Kiwi-Minsker, L. Synthesis of ZSM-5 zeolite in fluoride media: An innovative approach to tailor both crystal size and acidity. Microporous Mesoporous Mater. 2004, 74, 171–178.

    CAS  Google Scholar 

  19. Dai, W. J.; Kouvatas, C.; Tai, W. S.; Wu, G. J.; Guan, N. J.; Li, L. D.; Valtchev, V. Platelike MFI crystals with controlled crystal faces aspect ratio. J. Am. Chem. Soc. 2021, 143, 1993–2004.

    CAS  Google Scholar 

  20. Zhang, J. X.; Ren, L. M.; Zhou, A. J.; Li, W. H.; Shang, S. J.; Liu, Y.; Jia, Z. H.; Liu, W.; Zhang, A. F.; Guo, X. W. et al. Tailored synthesis of ZSM-5 nanosheets with controllable b-axis thickness and aspect ratio: Strategy and growth mechanism. Chem. Mater. 2022, 34, 3217–3226.

    CAS  Google Scholar 

  21. Ban, T.; Mitaku, H.; Suzuki, C.; Matsuba, J.; Ohya, Y.; Takahashi, Y. Crystallization and crystal morphology of silicalite-1 prepared from silica gel using different amines as a base. J. Cryst. Growth 2005, 274, 594–602.

    CAS  Google Scholar 

  22. Shi, J.; Zhao, G. L.; Teng, J. W.; Wang, Y. D.; Xie, Z. K. Morphology control of ZSM-5 zeolites and their application in cracking reaction of C4 olefin. Inorg. Chem. Front. 2018, 5, 2734–2738.

    CAS  Google Scholar 

  23. Liu, Y.; Qiang, W. L.; Ji, T. T.; Zhang, M.; Li, M. R.; Lu, J. M.; Liu, Y. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication. Sci. Adv. 2020, 6, eaay5993.

    CAS  Google Scholar 

  24. Ma, Q.; Fu, T. J.; Ren, K.; Li, H.; Jia, L. H.; Li, Z. Controllable orientation growth of ZSM-5 for methanol to hydrocarbon conversion: Cooperative effects of seed induction and medium pH control. Inorg. Chem. 2022, 61, 13802–13816.

    CAS  Google Scholar 

  25. Liu, C. Y.; Gu, W. Y.; Kong, D. J.; Guo, H. C. The significant effects of the alkali-metal cations on ZSM-5 zeolite synthesis: From mechanism to morphology. Microporous Mesoporous Mater. 2014, 183, 30–36.

    CAS  Google Scholar 

  26. Zhou, T. L.; Zhang, D. Z.; Liu, Y.; Sun, Y. W.; Ji, T. T.; Huang, S. J.; Liu, Y. Construction of monodispersed single-crystalline hierarchical ZSM-5 nanosheets via anisotropic etching. J. Energy Chem. 2022, 72, 516–521.

    CAS  Google Scholar 

  27. Huang, X.; Wang, C. F.; Zhu, Y. F.; Xu, W. Q.; Sun, Q.; Xing, A. H.; Ma, L. G.; Li, J.; Han, Z. H.; Wang, Y. G. Facile synthesis of ZSM-5 nanosheet arrays by preferential growth over MFI zeolite [100] face for methanol conversion. Microporous Mesoporous Mater. 2019, 288, 109573.

    CAS  Google Scholar 

  28. Qin, W.; Agarwal, A.; Choudhary, M. K.; Palmer, J. C.; Rimer, J. D. Molecular modifiers suppress nonclassical pathways of zeolite crystallization. Chem. Mater. 2019, 31, 3228–3238.

    CAS  Google Scholar 

  29. Shang, Z. Y.; Chen, Y.; Zhang, L. J.; Zhu, X. X.; Wang, X. P.; Shi, C. Plate-like MFI crystal growth achieved by guanidine compounds. Inorg. Chem. Front. 2022, 9, 2097–2103.

    CAS  Google Scholar 

  30. Shan, Z. C.; Wang, H.; Meng, X. J.; Liu, S. Y.; Wang, L.; Wang, C. Y.; Li, F.; Lewis, J. P.; Xiao, F. S. Designed synthesis of TS-1 crystals with controllable b-oriented length. Chem. Commun. 2011, 47, 1048–1050.

    CAS  Google Scholar 

  31. Zhou, Z. H.; Jiang, R. L.; Chen, X. S.; Wang, X. W.; Hou, H. L. One-step synthesis of hierarchical lamellar H-ZSM-5 zeolite and catalytic performance of methanol to olefin. J. Solid State Chem. 2021, 298, 122132.

    CAS  Google Scholar 

  32. Ali, B.; Lan, X. C.; Arslan, M. T.; Gilani, S. Z. A.; Wang, H. J.; Wang, T. F. Controlling the selectivity and deactivation of H-ZSM-5 by tuning b-axis channel length for glycerol dehydration to acrolein. J. Ind. Eng. Chem. 2020, 88, 127–136.

    CAS  Google Scholar 

  33. Yang, J. H.; Gong, K.; Miao, D. Y.; Jiao, F.; Pan, X. L.; Meng, X. J.; Xiao, F. S.; Bao, X. H. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion. J. Energy Chem. 2019, 35, 44–48.

    CAS  Google Scholar 

  34. Qureshi, B. A.; Lan, X. C.; Arslan, M. T.; Wang, T. F. Highly active and selective nano H-ZSM-5 catalyst with short channels along b-axis for glycerol dehydration to acrolein. Ind. Eng. Chem. Res. 2019, 58, 12611–12622.

    CAS  Google Scholar 

  35. Liu, Y.; Zhou, X. Z.; Pang, X. M.; Jin, Y. Y.; Meng, X. J.; Zheng, X. M.; Gao, X. H.; Xiao, F. S. Improved para-xylene selectivity in metaxylene isomerization over ZSM-5 crystals with relatively long b-axis length. ChemCatChem 2013, 5, 1517–1523.

    CAS  Google Scholar 

  36. Shi, J.; Du, Y. J.; He, W. R.; Zhao, G. L.; Qin, Y. C.; Song, L. J.; Hu, J.; Guan, Y.; Zhu, J. F.; Wang, C. M. et al. Insights into the effect of the adsorption preference of additives on the anisotropic growth of ZSM-5 zeolite. Chem.—Eur. J. 2022, 28, e202201781.

    CAS  Google Scholar 

  37. Díaz, I.; Kokkoli, E.; Terasaki, O.; Tsapatsis, M. Surface structure of zeolite (MFI) crystals. Chem. Mater. 2004, 16, 5226–5232.

    Google Scholar 

  38. Boxhoorn, G.; Sudmeijer, O.; van Kasteren, P. H. G. Identification of a double five-ring silicate, a possible precursor in the synthesis of ZSM-5. J. Chem. Soc. Chem. Commun. 1983, 1416–1418.

  39. Hendricks, W. M.; Bell, A. T.; Radke, C. J. Effects of organic and alkali metal cations on the distribution of silicate anions in aqueous solutions. J. Phys. Chem. 1991, 95, 9513–9518.

    CAS  Google Scholar 

  40. Camblor, M. A.; Mifsud, A.; Pérez-Pariente, J. Influence of the synthesis conditions on the crystallization of zeolite Beta. Zeolites 1991, 11, 792–797.

    CAS  Google Scholar 

  41. Yue, Q. D.; Kutukova, K.; Li, A.; Čejka, J.; Zschech, E.; Opanasenko, M. Controllable zeolite AST crystallization: Between classical and reversed crystal growth. Chem.—Eur. J. 2022, 28, e202200590.

    CAS  Google Scholar 

  42. Khan, Z.; Rafiquee, M. Z. A.; Kabir-ud-din; Niaz, M. A.; Khan, A. A. Kinetics and mechanism of alkaline hydrolysis of urea and sodium cyanate. Indian J. Chem. 1996, 35A, 1116–1119.

    CAS  Google Scholar 

  43. Price, G. D.; Pluth, J. J.; Smith, J. V.; Araki, T.; Bennett, J. M. Crystal structure of tetrapropylammonium fluoride-silicalite. Nature 1981, 292, 818–819.

    CAS  Google Scholar 

  44. Grosskreuz, I.; Gies, H.; Marler, B. Alteration and curing of framework defects by heating different as-made silica zeolites of the MFI framework type. Microporous Mesoporous Mater. 2020, 291, 109683.

    CAS  Google Scholar 

  45. Barlow, G. B.; Corish, P. J. 337. Infrared absorption spectra of some urea complexes. J. Chem. Soc. 1959, 1706–1710.

  46. Piasek, Z.; Urbański, T. The infra-red absorption spectrum and structure of urea. Bull. Pol. Acad. Sci-Tech. 1962, 10, 113–120.

    CAS  Google Scholar 

  47. Tanaka, K.; White, J. M. Characterization of species adsorbed on oxidized and reduced anatase. J. Phys. Chem. 1982, 86, 4708–4714.

    CAS  Google Scholar 

  48. Li, K. M.; Jiang, J. G.; Tian, S. C.; Chen, X. J.; Yan, F. Influence of silica types on synthesis and performance of amine-silica hybrid materials used for CO2 capture. J. Phys. Chem. C 2014, 118, 2454–2462.

    CAS  Google Scholar 

  49. Manivannan, M.; Rajendran, S. Investigation of inhibitive action of urea-Zn2+ system in the corrosion control of carbon steel in sea water. Int. J. Eng. Sci. Technol. 2011, 3, 8048–8060.

    Google Scholar 

  50. Stewart, J. E. Infrared absorption spectra of urea, thiourea, and some thiourea-alkali halide complexes. J. Chem. Phys. 1957, 26, 248–254.

    CAS  Google Scholar 

  51. Cui, S.; Cheng, W. W.; Shen, X. D.; Fan, M. H.; Russell, A.; Wu, Z. W.; Yi, X. B. Mesoporous amine-modified SiO2 aerogel: A potential CO2 sorbent. Energy Environ. Sci. 2011, 4, 2070–2074.

    CAS  Google Scholar 

  52. Patis, A.; Dracopoulos, V.; Nikolakis, V. Investigation of silicalite-1 crystallization using attenuated total reflection/fourier transform infrared spectroscopy. J. Phys. Chem. C 2007, 111, 17478–17484.

    CAS  Google Scholar 

  53. Al-Oweini, R.; El-Rassy, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R″Si(OR′)3 precursors. J. Mol. Struct. 2009, 919, 140–145.

    CAS  Google Scholar 

  54. Wang, Y.; Wang, R. W.; Xu, D. O.; Sun, C. Y.; Ni, L.; Fu, W. W.; Zeng, S. J.; Jiang, S.; Zhang, Z. T.; Qiu, S. L. Synthesis and properties of MFI zeolites with microporous, mesoporous and macroporous hierarchical structures by a gel-casting technique. New J. Chem. 2016, 40, 4398–4405.

    CAS  Google Scholar 

  55. Astorino, E.; Peri, J. B.; Willey, R. J.; Busca, G. Spectroscopic characterization of silicalite-1 and titanium silicalite-1. J. Catal. 1995, 157, 482–500.

    CAS  Google Scholar 

  56. Iwasaki, A.; Sano, T.; Kiyozumi, Y. Effect of additives on the growth behavior of silicalite crystal. Microporous Mesoporous Mater. 1998, 25, 119–126.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Luis J. Aguilera for the measurement of ATR-FTIR spectra, Valérie Ruaux for ICP-MS measurement, and Marie Lozier for Ar physisorption measurement. Z. X. Q. acknowledges the support from the National Natural Science Foundation of China (NSFC) (No. 22178389); S. M. acknowledges the support from NSFC (No. 21975285); and Z. X. Q. and S. M. acknowledge the support from PetroChina (Nos. PRIKY21084 and KYWX-21-021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengxing Qin or Svetlana Mintova.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Q., Liu, C., Zhao, H. et al. Urea-assisted morphological engineering of MFI nanosheets with tunable b-thickness. Nano Res. 16, 12196–12206 (2023). https://doi.org/10.1007/s12274-023-5749-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5749-0

Keywords

Navigation